
Lecture 3, Jan 23, 2024
Local Search and Optimization

• So far we have looked at problems where we want to find the minimum cost path to the goal; the goal
itself may be known and the path is the desired solution

• In some situations the path we take is irrelevant, and we just want to find the goal

Figure 1: Solution to the N -queens problem for N = 4.

• Example: the N -queens problem: place N chess queens on an N × N chessboard such that no two
queens can attack each other (i.e. no two queens share the same row, column, or diagonal)

• Every column must have exactly one queen, so we place one queen in each column and only move
queens along columns

– In general, we start from some random position and try to move to a better position
• For all such problems we define the following:

– S: set of all states
– N(s): neighbours of the state s ∈ S (i.e. all states reachable from s in one step)
– Val(s): value of the state s ∈ S

* This should reflect the “quality” of the state, i.e. how close it is to the goal
* For the N -queens problem, this could be the number of pairs of queens that can attack each

other
* We want Val(w) = 0 where w is the goal, so the problem becomes minimizing Val(s) until we

reach 0

Hill Climb Algorithm

• A simple strategy would be to always take steps that improve the value of the state in hopes of eventually
reaching the goal; this leads to the hill climb algorithm

– This is a type of local search, since at each step we aim to improve the local situation we’re in

• The hill climb algorithm is very simple and uses a minimal amount of memory since it only keeps track
of the current state

– However, hill climb is susceptible to getting stuck in local minima
– Since it only allows moves to better positions, if the goal is locked behind a worse position, it will

never be reached
– We want an algorithm that allows making a “mistake” (moving to a state with higher value) but

still stays mostly on track to the goal

Simulated Annealing

• We can use the simulated annealing algorithm, where transitions to states that raise the value are
allowed, and the probability of such transitions is dependent on the difference in value

• At each step, we pick a random neighbour C ′ and look at its value; if the value is lower, then the
transition is always allowed; if the value is higher, then the transition is allowed with probability
e− Val(C′)−Val(C)

kT

– This is inspired by the annealing process in material physics

1



Figure 2: Hill climb algorithm.

Figure 3: Simulated annealing algorithm.

2



– Transitions to states that raise the value are allowed, but the more the value is raised, the less
likely the transition is to occur

– T is a function of time, known as the cooling schedule, typically a decreasing function
* Initially, the “temperature” is high, so the probability remains high regardless of the value

difference, so the state can freely jump around
* As time goes on we lower the temperature, making transitions to worse states increasingly

unlikely
* The cooling schedule is application dependent

– The algorithm terminates when we reach Val(C) = 0; for some problems the value of the optimum
might not be known, in which case we terminate when T = 0

• Simulated annealing does not always reach the solution (i.e. it is incomplete), but it is often effective
for a variety of problems

3


	Lecture 3, Jan 23, 2024
	Local Search and Optimization
	Hill Climb Algorithm
	Simulated Annealing



