Lecture 3, Jan 23, 2024

Local Search and Optimization

- So far we have looked at problems where we want to find the minimum cost path to the goal; the goal itself may be known and the path is the desired solution
- In some situations the path we take is irrelevant, and we just want to find the goal

Figure 1: Solution to the N-queens problem for N = 4.

- Example: the N-queens problem: place N chess queens on an $N \times N$ chessboard such that no two queens can attack each other (i.e. no two queens share the same row, column, or diagonal)
- Every column must have exactly one queen, so we place one queen in each column and only move queens along columns
 - In general, we start from some random position and try to move to a better position
- For all such problems we define the following:
 - S: set of all states
 - N(s): neighbours of the state $s \in S$ (i.e. all states reachable from s in one step)
 - Val(s): value of the state $s \in S$
 - * This should reflect the "quality" of the state, i.e. how close it is to the goal
 - * For the N-queens problem, this could be the number of pairs of queens that can attack each other
 - * We want $\operatorname{Val}(w) = 0$ where w is the goal, so the problem becomes minimizing $\operatorname{Val}(s)$ until we reach 0

Hill Climb Algorithm

- A simple strategy would be to always take steps that improve the value of the state in hopes of eventually reaching the goal; this leads to the *hill climb* algorithm
 - This is a type of *local search*, since at each step we aim to improve the local situation we're in
- The hill climb algorithm is very simple and uses a minimal amount of memory since it only keeps track of the current state
 - However, hill climb is susceptible to getting stuck in local minima
 - Since it only allows moves to better positions, if the goal is locked behind a worse position, it will never be reached
 - We want an algorithm that allows making a "mistake" (moving to a state with higher value) but still stays mostly on track to the goal

Simulated Annealing

- We can use the *simulated annealing* algorithm, where transitions to states that raise the value are allowed, and the probability of such transitions is dependent on the difference in value
- At each step, we pick a random neighbour C' and look at its value; if the value is lower, then the transition is always allowed; if the value is higher, then the transition is allowed with probability $e^{-\frac{\operatorname{Val}(C')-\operatorname{Val}(C)}{kT}}$
 - This is inspired by the annealing process in material physics

Algorithm 1 HillClimb(S)

	1. $minVal \leftarrow val(S)$		
	2. $minState \leftarrow$ { }		//Only 1 thing to track
	3. for each u in $N(S)$ do		
	4.	if $val(u) < minVal$ the	n
	5.	minVal = val(u)	
	6.	minState = u	
	7. return minState		
$\label{eq:light} \mbox{Algorithm 2} SolveNQueens(initialState)$			

1. $S \leftarrow initialState$ 2. while val(S)! = 0 do 3. $S \leftarrow HillClimb(S)$ 4. return S

 $\label{eq:algorithm} \textbf{Algorithm 3} \ \textbf{SimulatedAnnealing}(initialState)$

1. $C \leftarrow initialState$ 2. for t=0 to ∞ do $C' \leftarrow PickRandomNeighbour(C)$ 3. $T \leftarrow Schedule(t)$ //Assume that val(Goal)=04. if val(C')=0 then5. $\operatorname{return} C'$ 6. if val(C') < val(C) then 7. $C \leftarrow C'$ 8. else 9. $C \leftarrow C'$ with Probability $\propto exp\left(rac{val(C)-val(C')}{K_BT}
ight)$ 10.

Figure 3: Simulated annealing algorithm.

- Transitions to states that raise the value are allowed, but the more the value is raised, the less likely the transition is to occur
- -T is a function of time, known as the *cooling schedule*, typically a decreasing function
 - * Initially, the "temperature" is high, so the probability remains high regardless of the value difference, so the state can freely jump around
 - * As time goes on we lower the temperature, making transitions to worse states increasingly unlikely
 - * The cooling schedule is application dependent
- The algorithm terminates when we reach Val(C) = 0; for some problems the value of the optimum might not be known, in which case we terminate when T = 0
- Simulated annealing does not always reach the solution (i.e. it is incomplete), but it is often effective for a variety of problems