Lecture 3, Jan 23, 2024

Local Search and Optimization

e So far we have looked at problems where we want to find the minimum cost path to the goal; the goal
itself may be known and the path is the desired solution
e In some situations the path we take is irrelevant, and we just want to find the goal

Figure 1: Solution to the N-queens problem for N = 4.

o Example: the N-queens problem: place N chess queens on an N x N chessboard such that no two
queens can attack each other (i.e. no two queens share the same row, column, or diagonal)
e Every column must have exactly one queen, so we place one queen in each column and only move
queens along columns
— In general, we start from some random position and try to move to a better position
e For all such problems we define the following:
— St set of all states
— N(s): neighbours of the state s € S (i.e. all states reachable from s in one step)
— Val(s): value of the state s € S
* This should reflect the “quality” of the state, i.e. how close it is to the goal
* For the N-queens problem, this could be the number of pairs of queens that can attack each
other
* We want Val(w) = 0 where w is the goal, so the problem becomes minimizing Val(s) until we
reach 0

Hill Climb Algorithm

o A simple strategy would be to always take steps that improve the value of the state in hopes of eventually
reaching the goal; this leads to the hill climb algorithm
— This is a type of local search, since at each step we aim to improve the local situation we’re in

e The hill climb algorithm is very simple and uses a minimal amount of memory since it only keeps track
of the current state
— However, hill climb is susceptible to getting stuck in local minima
— Since it only allows moves to better positions, if the goal is locked behind a worse position, it will
never be reached
— We want an algorithm that allows making a “mistake” (moving to a state with higher value) but
still stays mostly on track to the goal

Simulated Annealing

e« We can use the simulated annealing algorithm, where transitions to states that raise the value are
allowed, and the probability of such transitions is dependent on the difference in value

o At each step, we pick a random neighbour C’ and look at its value; if the value is lower, then the

transition is always allowed; if the value is higher, then the transition is allowed with probability
Val(C’)—Val(C)
P o —

— This is inspired by the annealing process in material physics

Algorithm 1 HillClimb(S)

1. minVal < val(S)

2. minState + {} //0nly 1 thing to track
3. for each win N(S) do

4. ifval(u) < minVal then

5. minVal = val(u)

6. minState = u

7. return minState

Algorithm 2 Solve N Queens(initial State)

1. 8 < initialState

2. while val(S)! = 0 do

3. S+ HillClimb(S)
4. return S

Figure 2: Hill climb algorithm.

Algorithm 3 SimulatedAnnealing(initialState)

1. C < initial State
2.fort = 0toocdo
3. C' + PickRandomNeighbour(C)
T < Schedule(t) //Assume that val(Goal) = 0
if val(C') = 0 then
return C’
if val(C') < val(C) then
C—

e ® N o o &

else

10. C + C' with Probability o< ezp (M)

KT

Figure 3: Simulated annealing algorithm.

— Transitions to states that raise the value are allowed, but the more the value is raised, the less
likely the transition is to occur
— T is a function of time, known as the cooling schedule, typically a decreasing function
* Initially, the “temperature” is high, so the probability remains high regardless of the value
difference, so the state can freely jump around
* As time goes on we lower the temperature, making transitions to worse states increasingly
unlikely
* The cooling schedule is application dependent
— The algorithm terminates when we reach Val(C') = 0; for some problems the value of the optimum
might not be known, in which case we terminate when 7' =0
o Simulated annealing does not always reach the solution (i.e. it is incomplete), but it is often effective
for a variety of problems

	Lecture 3, Jan 23, 2024
	Local Search and Optimization
	Hill Climb Algorithm
	Simulated Annealing

