Lecture 12, Apr 2, 2024

Proof Procedures

- Given a knowledge base KB, we want to know whether $KB \models \alpha$ where α is some formula (whether the knowledge base entails α)
 - We can show that $KB \wedge \neg \alpha$ is unsatisfiable
- If we can manipulate a formula into the empty formula, denoted by \Box , then we know it is unsatisfiable - We know that if $\varphi = \alpha \lor \beta$, then models(φ) = models(α) \cup models(β)
 - If the formula is empty, we have nothing to union, so nothing models it
 - Therefore the empty formula is unsatisfiable
- We are interested in formulas in their *clausical form*, $(C_1 \wedge C_2 \wedge C_3 \wedge \cdots \wedge C_m)$
 - Each clause $C_i = (l'_1 \lor l'_2 \lor \cdots \lor l'_k)$
 - Each l'_i is a *literal*, which is a proposition p or $\neg p$
 - Any formula can be written in clausal form
 - Using the Tseytin transformation, any formula can be converted into an equisatisfiable formula that is linear in size
 - * This is as opposed to the naive method of just expanding it out, which leads to exponential size formulas

• In propositional logic, each step of a *proof* is derived from *resolution* $\frac{(\alpha \lor p) \land (\neg p \lor \beta)}{(\alpha \lor \beta)}$ and $\frac{p \land \neg p}{\Box}$ • Suppose we want to prove by resolution that formula φ is false, i.e. a *resolution rejutation*; resolution

- refutation is a sequence of clauses C_1, \ldots, C_t where $C_t = \Box$, and all $C_i \in \varphi$ or $\frac{C_{i_1}C_{i_2}}{C_k}$ where $i_1, i_2 < k$ All the clauses are either the original formula, or implied by previous formulas, leading to an empty formula that is unsatisfiable

• In first-order logic we do this over predicates instead, $\frac{(\alpha(x) \vee \neg P(y))(P(y) \vee \beta(z))}{\alpha(x) \vee \beta(x)}$, but quantifiers

- may be involved
 - If the quantifies are the same, we can do this
 - But if quantifiers are different, this isn't true anymore
 - $\exists x, y, z(\varphi(x, y, z))$ is equivalent to $\neg \forall x, y, z = \neg \varphi(x, y, z)$
- Skolemization: we can get rid of one set of quantifiers, e.g. replacing all \exists with \forall or vice versa
- Given any formula we want it first in a form $\forall x, y, z(C_1 \land C_2 \land \cdots \land C_m)$
 - First we get all the quantifiers out of the formula, and then apply skolemization so we are only left with \forall
 - * Note with $\exists y P(y) \land \exists y R(y)$ we cannot simply take out $\exists y$ because the y in P and R are not guaranteed to be the same
 - * To avoid this, first we make sure all variables in quantifiers have unique names
 - * Once we have unique names for all of them, we can pull them out
 - * Note the order of quantifiers matters we cannot swap them
 - Once we take it out, we can apply resolution just like in propositional logic