
Lecture 11, Mar 26, 2024
First-Order Logic

• We generalize propositional logic to have the notion of variables
• First-order logic consists of the following components:

– A set of variables, V
* These can take values from a domain D

– A set of predicate/relation symbols P k : Dk 7→ { 0, 1 } where k is the number of arguments
* These take a set of arguments (variables) and can be true or false, depending on the value of

the variables
* P 0 is the set of predicates that don’t take any arguments, which is the set of propositions
* These define relations among variables

– A set of function symbols fk : Dk 7→ D where k is the number of arguments
* These define functions based on the variables, returning another variable
* A special case of the relations

– The quantifiers ∀ and ∃
• Define the set of all terms:

– TERMi+1 = TERMi ∪ { fk
n(t1, . . . , tk) | t1, . . . , tk ∈ TERMi, ∀n, k }

– TERM0 = V
• Define the set of all well-formed formulas:

– FORMi+1 = FORMi

∪ { (α ◦ β) | α,β ∈ FORMi }
∪ { (¬α) | α ∈ FORMi }
∪ { ∀xφ | x ∈ V ,φ ∈ FORMi }
∪ { ∃xφ | x ∈ V ,φ ∈ FORMi }

* We augment our definition from propositional logic with the new quantifiers ∀ and ∃
– FORM0 = {P k

n (t1, . . . , tk) | t1, . . . , tk ∈ TERM, ∀n, k }
* This is the set of all predicates over all terms

• Consider the expression ∀x∃y(x+ y > 3)
– Formally we express this as ∀x∃y(> (+(x, y), 3))
– + is a function and > is a predicate
– We need to define the domain of all variables, and define the meaning of + and >

• A context or structure consists of A = (D, fk,A
i , . . . ,P k,A

i , . . .), which is a domain and definition of all
the functions and predicates

– fk,A
i defines the meaning of function fk

i in the context of A
– P k,A

i defines the meaning of predicate P k
i in the context A

– The definitions assign Dk 7→ { 0, 1 } for every combination of the values of the variables
• A k-ary function can be converted into a predicate by adding an extra argument; so functions are

syntactic sugar that’s not needed to define first-order logic
• An assignment is σ : V 7→ D which gives a value to all variables

– We need to assign values to variables before evaluating some expressions, e.g. ∀x(x+ y > 3)
– σ(x 7→ m) or equivalently σ(x/m) denotes the value m being assigned to x

• Similar to propositional logic A,σ |= φ if φ is true under the structure A and assignment σ
– Note that in ϕ we might have variables appearing in quantifiers that have been assigned a value

by σ; in this case we don’t care about the assignment in σ
– ∃xψ iff there exists m ∈ D such that A,σ(x 7→ m) |= ψ
– ∀xψ iff for all m ∈ D we have A,σ(x 7→ m) |= ψ

• The extension of σ is σ̄ : TERM 7→ D which assigns a value to all terms
– This can be defined recursively, since a term is either a variable or a function of terms
– σ̄(t) = fk

i (σ̄(t1), . . . , σ̄(tk)) for t ∈ TERM
– Base case is σ̄(t) = σ(t) for t ∈ V

• We are now interested in the analog of the relevance lemma from propositional logic

1

– Not all variables in formulas are free variables, e.g. for ∃x(x + y > 3), x is not a free variable
because of the ∃, and it doesn’t matter what value σ assigns to it

• FreeVars : FORM 7→ 2V , a mapping from formulas to sets of variables
– FreeVars(∀xφ) = FreeVars(φ)\ {x }
– FreeVars(∃xφ) = FreeVars(φ)\ {x }
– FreeVars(¬φ) = FreeVars(φ)
– FreeVars(φ ◦ ψ) = FreeVars(φ) ∪ FreeVars(ψ)
– FreeVars(P k

i (t1, . . . , tk)) = FreeVars(t1) ∪ . . . ∪ FreeVars(tk) for tn ∈ TERM
– FreeVars(fk

i (t1, . . . , tk)) = FreeVars(t1) ∪ . . . ∪ FreeVars(tk) for tn ∈ TERM
– FreeVars(x) = {x } for x ∈ V

• Relevance lemma: if ∀x ∈ FreeVars(x), σ1(x) = σ2(x), then A,σ1 |= φ iff A,σ2 |= φ
– This has the same interpretation as the relevance lemma for propositional logic

• Define A |= φ iff ∀σ(A,σ |= φ), i.e. φ is always satisfied in structure A (analog of valid formulas)
– Likewise A ̸|= φ iff ∀σ(A,σ ̸|= φ) (analog of unsatisfiable formulas)
– We only need to care about the free variables, since the non-free ones don’t affect whether φ is

modelled
• If FreeVars(φ) = ∅, then φ is a sentence

– We can use sentences to store our knowledge in a knowledge base
• Define φ |= ψ if the set of all assignments that model φ is a subset of all assignments that model ψ (so

if φ is modelled by an assignment, ψ will also be)
– models(φ) ⊆ models(ψ)
– Alternatively models(φ) ∩ models(ψ) = ∅
– Equivalently models(φ ∧ ¬ψ) = ∅
– If φ is a knowledge base of sentences, we use this to check if a formula is true

• p ∧ (¬p) is an empty clause, denoted (), which is a contradiction
• (α ∨ p) ∧ (¬p ∨ β) gives (α ∨ β)

– This is known as resolution
– This is the transitivity of implication, since ¬x ∨ y means x → y

• Given some logical statement we can keep applying resolution, and eventually if we end up with an
empty clause, we know the original statement was false because it leads to a contradiction

• Therefore if we want to check if our knowledge base models some formula α, we can check if KB ∧ (¬α)
leads to an empty clause

2

	Lecture 11, Mar 26, 2024
	First-Order Logic

