Lecture 11, Mar 26, 2024

First-Order Logic

e We generalize propositional logic to have the notion of variables
e First-order logic consists of the following components:
— A set of variables, V
* These can take values from a domain D
— A set of predicate/relation symbols P*: DF {0,1} where k is the number of arguments
* These take a set of arguments (variables) and can be true or false, depending on the value of
the variables
* PY is the set of predicates that don’t take any arguments, which is the set of propositions
* These define relations among variables
— A set of function symbols f*: D¥ — D where k is the number of arguments
* These define functions based on the variables, returning another variable
* A special case of the relations
— The quantifiers ¥V and 3
e Define the set of all terms:
~ TERM, 41 = TERM,; U{ f¥(t1,... tx) | t1,...,t, € TERM;,Vn, k}
- TERMy =V
e Define the set of all well-formed formulas:
- FORM;;; = FORM;
U{(aop)]|«,B € FORM,}
U{(—a)| « € FORM; }
U{Vzp |z e V,p € FORM,; }

U{3zp |z €V,p e FORM; }
* We augment our definition from propositional logic with the new quantifiers V and 3
~ FORM = { P¥(t1,...,tx) | t1,...,tx € TERM,Vn,k}
* This is the set of all predicates over all terms
o Consider the expression VzIy(z +y > 3)
— Formally we express this as Vz3y(> (+(x,y),3))
— + is a function and > is a predicate
— We need to define the domain of all variables, and define the meaning of + and >
e A context or structure consists of A = (D, fik’A, e Pik’““7 ...), which is a domain and definition of all
the functions and predicates
- flk A defines the meaning of function fik in the context of A
- Pik’A defines the meaning of predicate PZ-]’c in the context A
— The definitions assign D* + {0,1} for every combination of the values of the variables
e A k-ary function can be converted into a predicate by adding an extra argument; so functions are
syntactic sugar that’s not needed to define first-order logic
e An assignment is o: V — D which gives a value to all variables
— We need to assign values to variables before evaluating some expressions, e.g. Vz(z +y > 3)
— o(x — m) or equivalently o(z/m) denotes the value m being assigned to x
o Similar to propositional logic A, o |= ¢ if ¢ is true under the structure .4 and assignment o
— Note that in ¢ we might have variables appearing in quantifiers that have been assigned a value
by o; in this case we don’t care about the assignment in o
— Jxtp iff there exists m € D such that A, o(z — m) E 9
— Vatp iff for all m € D we have A, o(z — m) E ¢
e The extension of o is 6: TERM +— D which assigns a value to all terms
— This can be defined recursively, since a term is either a variable or a function of terms
~ a(t) = fF@(t1),...,o(ty)) for t € TERM
— Base case is 6(t) = o(t) for t € V
e We are now interested in the analog of the relevance lemma from propositional logic



— Not all variables in formulas are free variables, e.g. for 3z(z + y > 3), x is not a free variable
because of the 3, and it doesn’t matter what value o assigns to it
FreeVars: FORM — 2V, a mapping from formulas to sets of variables
— FreeVars(Vry) = FreeVars(p)\ { z }
— FreeVars(3zy) = FreeVars(p)\ {z }
— FreeVars(—p) = FreeVars(yp)
FreeVars(p o 1) = FreeVars(y) U FreeVars (1))
(
(

o

— FreeVars(PF(ty,...,t)) = FreeVars(t;) U ... U FreeVars(ty) for t, € TERM
FreeVars(fF(t1,...,tx)) = FreeVars(t;) U . ..U FreeVars(t,) for t,, € TERM

— FreeVars(z) = {z} forz e V
Relevance lemma: if Vo € FreeVars(z), o1(x) = o2(x), then A, 01 = g iff A,os = ¢

— This has the same interpretation as the relevance lemma for propositional logic
Define A |= ¢ iff Vo (A, 0 = @), i.e. ¢ is always satisfied in structure A (analog of valid formulas)

— Likewise A £ ¢ iff Vo (A, o [~ ¢) (analog of unsatisfiable formulas)

— We only need to care about the free variables, since the non-free ones don’t affect whether ¢ is

modelled

If FreeVars(yp) = @, then ¢ is a sentence

— We can use sentences to store our knowledge in a knowledge base
Define ¢ = 1 if the set of all assignments that model ¢ is a subset of all assignments that model ¢ (so
if ¢ is modelled by an assignment, ¢ will also be)

— models(p) C models())

— Alternatively models(¢) N models(y)) = &

— Equivalently models(p A —)) = &

— If ¢ is a knowledge base of sentences, we use this to check if a formula is true
p A (—p) is an empty clause, denoted (), which is a contradiction
(aVp)A(=pVB) gives (aV B3)

— This is known as resolution

— This is the transitivity of implication, since =« V y means x — y
Given some logical statement we can keep applying resolution, and eventually if we end up with an
empty clause, we know the original statement was false because it leads to a contradiction
Therefore if we want to check if our knowledge base models some formula «, we can check if KB A (—a)
leads to an empty clause



	Lecture 11, Mar 26, 2024
	First-Order Logic


