Lecture 11, Mar 26, 2024

First-Order Logic

- We generalize propositional logic to have the notion of variables
- First-order logic consists of the following components:
 - A set of variables, V
 - * These can take values from a domain D
 - A set of predicate/relation symbols $P^k \colon D^k \mapsto \{0,1\}$ where k is the number of arguments
 - * These take a set of arguments (variables) and can be true or false, depending on the value of the variables
 - * P^0 is the set of predicates that don't take any arguments, which is the set of propositions * These define relations among variables
 - A set of function symbols $f^k : D^k \mapsto D$ where k is the number of arguments
 - * These define functions based on the variables, returning another variable
 - * A special case of the relations
 - The quantifiers \forall and \exists
- Define the set of all terms:
 - TERM_{*i*+1} = TERM_{*i*} \cup { $f_n^k(t_1, \ldots, t_k) \mid t_1, \ldots, t_k \in \text{TERM}_i, \forall n, k$ }
 - TERM₀ = V
- Define the set of all well-formed formulas:
 - FORM_{*i*+1} = FORM_{*i*}

$$\cup \{ (\alpha \circ \beta) \mid \alpha, \beta \in \text{FORM}_i \}$$

- $\cup \{ (\alpha \circ \beta) \mid \alpha, \beta \in \text{FORM}_i \}$ $\cup \{ (\neg \alpha) \mid \alpha \in \text{FORM}_i \}$
- $\cup \{ \forall x\varphi \mid x \in V, \varphi \in FORM_i \}$
- $\cup \{ \exists x \varphi \mid x \in V, \varphi \in FORM_i \}$
- * We augment our definition from propositional logic with the new quantifiers \forall and \exists
- $\operatorname{FORM}_{0} = \{ P_{n}^{k}(t_{1}, \ldots, t_{k}) \mid t_{1}, \ldots, t_{k} \in \operatorname{TERM}, \forall n, k \}$
 - * This is the set of all predicates over all terms
- Consider the expression $\forall x \exists y (x + y > 3)$
 - Formally we express this as $\forall x \exists y (> (+(x, y), 3))$
 - + is a function and > is a predicate
 - We need to define the domain of all variables, and define the meaning of + and >
- A context or structure consists of $\mathcal{A} = (D, f_i^{k, \mathcal{A}}, \dots, P_i^{k, \mathcal{A}}, \dots)$, which is a domain and definition of all the functions and predicates
 - $f_i^{k,\mathcal{A}}$ defines the meaning of function f_i^k in the context of \mathcal{A} $P_i^{k,\mathcal{A}}$ defines the meaning of predicate P_i^k in the context \mathcal{A}

 - The definitions assign $D^{k} \mapsto \{0,1\}$ for every combination of the values of the variables
- A k-ary function can be converted into a predicate by adding an extra argument; so functions are syntactic sugar that's not needed to define first-order logic
- An assignment is $\sigma: V \mapsto D$ which gives a value to all variables
 - We need to assign values to variables before evaluating some expressions, e.g. $\forall x(x+y>3)$
 - $-\sigma(x \mapsto m)$ or equivalently $\sigma(x/m)$ denotes the value m being assigned to x
- Similar to propositional logic $\mathcal{A}, \sigma \models \varphi$ if φ is true under the structure \mathcal{A} and assignment σ
 - Note that in ϕ we might have variables appearing in quantifiers that have been assigned a value by σ ; in this case we don't care about the assignment in σ
 - $-\exists x\psi$ iff there exists $m \in D$ such that $\mathcal{A}, \sigma(x \mapsto m) \models \psi$
 - $\forall x \psi \text{ iff for all } m \in D \text{ we have } \mathcal{A}, \sigma(x \mapsto m) \models \psi$
- The extension of σ is $\bar{\sigma}$: TERM $\mapsto D$ which assigns a value to all terms
 - This can be defined recursively, since a term is either a variable or a function of terms
 - $-\bar{\sigma}(t) = f_i^k(\bar{\sigma}(t_1),\ldots,\bar{\sigma}(t_k))$ for $t \in \text{TERM}$
 - Base case is $\bar{\sigma}(t) = \sigma(t)$ for $t \in V$
- We are now interested in the analog of the relevance lemma from propositional logic

- Not all variables in formulas are *free variables*, e.g. for $\exists x(x + y > 3), x$ is not a free variable because of the \exists , and it doesn't matter what value σ assigns to it

- FreeVars: FORM $\mapsto 2^V$, a mapping from formulas to sets of variables
 - FreeVars $(\forall x\varphi)$ = FreeVars $(\varphi) \setminus \{x\}$
 - FreeVars $(\exists x\varphi)$ = FreeVars $(\varphi) \setminus \{x\}$
 - FreeVars $(\neg \varphi)$ = FreeVars (φ)
 - FreeVars $(\varphi \circ \psi)$ = FreeVars $(\varphi) \cup$ FreeVars (ψ)
 - FreeVars $(P_i^k(t_1,\ldots,t_k))$ = FreeVars $(t_1) \cup \ldots \cup$ FreeVars (t_k) for $t_n \in$ TERM
 - FreeVars $(f_i^k(t_1,\ldots,t_k))$ = FreeVars $(t_1) \cup \ldots \cup$ FreeVars (t_k) for $t_n \in$ TERM
 - FreeVars $(x) = \{x\}$ for $x \in V$
- Relevance lemma: if $\forall x \in \text{FreeVars}(x), \sigma_1(x) = \sigma_2(x)$, then $\mathcal{A}, \sigma_1 \models \varphi$ iff $\mathcal{A}, \sigma_2 \models \varphi$
 - This has the same interpretation as the relevance lemma for propositional logic
- Define $\mathcal{A} \models \varphi$ iff $\forall \sigma(\mathcal{A}, \sigma \models \varphi)$, i.e. φ is always satisfied in structure \mathcal{A} (analog of valid formulas)
 - Likewise $\mathcal{A} \not\models \varphi$ iff $\forall \sigma(\mathcal{A}, \sigma \not\models \varphi)$ (analog of unsatisfiable formulas)
 - We only need to care about the free variables, since the non-free ones don't affect whether φ is modelled
- If FreeVars $(\varphi) = \emptyset$, then φ is a *sentence*
 - We can use sentences to store our knowledge in a knowledge base
- Define $\varphi \models \psi$ if the set of all assignments that model φ is a subset of all assignments that model ψ (so if φ is modelled by an assignment, ψ will also be)
 - $\operatorname{models}(\varphi) \subseteq \operatorname{models}(\psi)$
 - Alternatively $\operatorname{models}(\varphi) \cap \operatorname{models}(\psi) = \emptyset$
 - Equivalently models $(\varphi \land \neg \psi) = \emptyset$
 - If φ is a knowledge base of sentences, we use this to check if a formula is true
- $p \wedge (\neg p)$ is an *empty clause*, denoted (), which is a contradiction
- $(\alpha \lor p) \land (\neg p \lor \beta)$ gives $(\alpha \lor \beta)$
 - This is known as *resolution*
 - This is the transitivity of implication, since $\neg x \lor y$ means $x \to y$
- Given some logical statement we can keep applying resolution, and eventually if we end up with an empty clause, we know the original statement was false because it leads to a contradiction
- Therefore if we want to check if our knowledge base models some formula α , we can check if $KB \wedge (\neg \alpha)$ leads to an empty clause