Lecture 10, Mar 19, 2024

Knowledge Representation and Reasoning (KR&R)

- How do we represent the information that we know, and reason intelligently using this information?
- This is the problem of knowledge representation and reasoning (KR&R)
 - $-\ Representation:$ symbolic encoding of propositions believed by some agent
 - $\ast\,$ Assigning symbols, and relating them
 - *Reasoning*: manipulation of said symbolic encoding to produce new propositions believed by the agent, but were not initially explicitly stated
 - * Making rules for manipulating the symbols
- Boolean algebra or propositional logic is a set of rules for how to manipulate these propositions
 - In propositional logic, propositions are restricted to true statements

Propositional Logic

- For propositional logic, the set of operators are: ∨ (OR), ∧ (AND), ¬ (NOT) and the brackets (and)
 ∘ denotes any one of the binary operators
- Define PROP as the set of all propositions, OP as the set of all operators, and WDF (aka WFF) as the set of all well-defined (aka well-formed) formulas
 - Valid propositions follow a syntax; all propositions in the WDF is considered well-defined
 - If PROP is a finite set, then WDF is a countably infinite set
 - We construct WDF recursively as follows:
 - * $FORM_0 = PROP$
 - * $\operatorname{FORM}_{i+1} = \operatorname{FORM}_i \cup \{ (\alpha \circ \beta) \mid \alpha, \beta \in \operatorname{FORM}_i \} \cup \{ (\neg \alpha) \mid \alpha \in \operatorname{FORM}_i \}$
 - * FORM = $\bigcup_{i=0}^{\infty}$ FORM_i
 - Note that this excludes things like $(\alpha \circ \beta \circ \gamma)$
- Every formula is either:
 - 1. Atomic formula: a member of PROP
 - 2. Composite formula: made of a primary connective and set of subformulas
 - e.g. in $(\neg \alpha)$, \neg is the primary connective and $\{\alpha\}$ is the subformula; in $(\alpha \circ \beta)$, \circ is the primary connective, and $\{\alpha, \beta\}$ are the subformulas

Theorem

•

Unique Readability Theorem: Every (well-formed) formula is either atomic, or has a unique primary connective and unique set of well-defined subformulas.

• A truth assignment is a mapping $\tau \colon \text{PROP} \mapsto \{0, 1\}$

- This basically assigns a value to all the propositions, but not all well-defined formulas

The extension of
$$\tau$$
 for a formula φ is $\bar{\tau}(\varphi) = \begin{cases} \tau(p) & \varphi = p \in \text{PROP} \\ \neg(\bar{\tau}(\alpha)) & \varphi = (\neg \alpha) \\ \circ(\bar{\tau}(\alpha), \bar{\tau}(\beta)) & \varphi = (\alpha \circ \beta) \end{cases}$

- Sometimes we denote this as $\varphi(\tau)$
- This assigns a value to all WDF
- We say that τ models φ , or $\tau \models \varphi$ iff $\overline{\tau}(\varphi) = 1$

• Let
$$AP(\varphi) = \begin{cases} \{p\} & \varphi = p \in PROI \\ AP(\alpha) & \varphi = (\neg \alpha) \\ AP(\alpha) \cup AP(\beta) & \varphi = (\alpha \circ \beta) \end{cases}$$

- This defines the set of atomic propositions that appear in a formula

Theorem

Relevance Lemma: If for all propositions p that appear in φ , both τ_1 and τ_2 assign it the same value, then τ_1 models φ iff τ_2 models φ , i.e.

$$\forall p \in \operatorname{AP}(\varphi), \tau_1(p) = \tau_2(p) \quad \Longrightarrow \quad \tau_1 \models \varphi \iff \tau_2 \models \varphi \text{ and } \varphi(\tau_1) = \varphi(\tau_2)$$

- Define $\varphi \models \exists \psi$ iff $\forall \alpha \in 2^{\text{PROP}}, \varphi(\tau) = \psi(\tau)$, i.e. they have the same value for all assignments - e.g. $((p \lor q) \lor p) \models \exists (p \lor q)$
- models(φ) = { $\varphi \mid \tau \models \varphi \text{ or } \tau(\varphi) = 1 \text{ or } \overline{\tau}(\varphi) = 1$ }
- Valid formulas, denoted $\models \varphi$, are formulas such that $\forall \tau, \tau \models \varphi$ they are always true
 - If $\forall \tau, \tau \not\models \varphi$, then φ is *unsatisfiable* they are always false
 - If $\exists \tau, \tau \models \varphi$, then φ is *satisfiable* they are sometimes true
- Propositional logic is limited to only boolean variables, which makes cross-references between individuals in statements impossible
 - e.g. we can't model statements like "if x likes y and y plays golf then x watches golf", because we don't have variables or statements that are only sometimes true
- We also have no quantifiers; to state a property for all or some members of the domain, we have to explicitly list them