
Lecture 1, Jan 9, 2024
Rational Agents

• An agent is anything that perceives the environment through sensors and acts upon the environment
through actuators; e.g. humans and robots are both agents

– The agent function maps from percept histories/sequences to actions: f : P ∗ 7→ A
– The agent program runs on the physical architecture to perform f
– The transition model is a function s′ = T (s, a) that maps the current state and an action to the

next state
– Example: for a robot that mops the room:

* Environment: the location of the robot and the status of each location (clean and dirty)
* Percept: current location and the status of the location
* Actions: move around and mop the current location
* The agent’s function would map sequences of percepts to actions, as in the figure below

Figure 1: Example agent function for the mop robot.

• A rational agent is an agent that does the “right thing”, based on all the information it has access to
– Rational agents are not omniscient; the “right thing” is conditioned on the information and

resources the agent can access
– To define this, we define some performance measure, an objective criterion for measuring the

success of the agent’s behaviour
• Properties of task environments:

– A task is fully observable if sensors provide access to the complete state of the environment at all
times; otherwise it is partially observable

– A task is deterministic if the next state of the environment is completely determined by the current
state and the agent’s action; otherwise it is stochastic

– A task is dynamic if the environment can change while the agent is deliberating; otherwise it is
dynamic

– A task is discrete if the number of states, percepts, actions is finite; otherwise it is continuous
– A task is single-agent if the agent operates by itself; otherwise it is multi-agent

• Types of agent programs:
– Simple reflex: actions only depend on percept
– Model-based reflex : action depend on internal state (based on percept history), model of the world,

and percept
– Goal-based: action depends on current state, percepts, model of the world, and tries to achieve a

desired goal
– Utility-based: tries to achieve multiple conflicting goals; uses a weighted combination of goals

Goal-Based Agents

• Example: finding the shortest route between two locations
– States: locations
– Actions: moving between locations

1



– Transition model: taking current location and direction that we move in, outputting the new
location

– Goal test: whether we are at the location we want to go
– Cost function: length of route
– In general, we want to keep the action simple, and restrict what we can do in the transition model

Search Algorithms
• Many problems can be modelled as having an initial node, a successor function S(x) giving the set of

new nodes from a node x in a single action, the goal test function G(x), and the action cost function
C(x; a; y) giving the cost of moving from x to y using action a

– A state represents a physical configuration, while a node is a part of a search tree
– Each node includes the state, parent node, action, and path cost
– Two different nodes are allowed to represent the same state!
– In most settings, representing the entire graph in memory is impractical, so implicit representations

that only keep a part of the graph at a time are used
• To solve this problem, we can start at the initial node and keep searching until we reach a goal node

– The frontier is the set of all nodes that we have seen but haven’t explored
* At initialization this is just the initial node

– At each iteration we can choose a node from the frontier, explore it, and add its neighbours to the
frontier

– Tree search algorithm don’t store information about visited states, so can end up in cycles
– Graph search algorithms keep track of visited nodes so explored nodes are not revisited (aka cycle

checking)
• How do we evaluate an algorithm?

– Completeness: whether the algorithm always finds a solution, if one exists
– Optimality: is the solution least-cost?
– Time complexity: how long does it take to find a solution?
– Space complexity: how many nodes do we need to store in memory?

• To quantify the problem we use the following parameters:
– Branch width b: maximum number of successors on each node

* Unless otherwise stated, assuming that this is finite, i.e. at every state there are a finite number
of states we can go to

– Depth d: depth of shallowest goal node
* This is usually finite

– Max depth m: max depth of any node from the start node
* This is often infinite (but countably infinite) – e.g. if the workspace of the robot is the entirety

of Mars
– We don’t know the number of nodes in advance so instead of we use these parameters, since they

are local properties
• Note worst-case scenario analysis does not capture the graph structure; performance in the real world

is often highly problem-dependent, so the best algorithm will also be
• Uninformed search algorithms use only the problem input; no domain information is used

– The problem is represented either explicitly or implicitly as graphs
– Includes BFS, DFS, uniform-cost search

Breadth First Search

• Explores nodes in order of their discovery, using a FIFO queue
• Completeness: yes; even for infinitely large graphs, as long as b and d are finite, the goal will eventually

be reached
• Time complexity: O(bd+1)

– At each node we explore at most b new nodes
• Space complexity: O(bd+1)

2



Figure 2: BFS algorithm.

– This is the max size of the frontier
• Optimality: no; the result is not optimal in cost, but it is optimal in the number of state transitions

– Note simply replacing the queue by a priority queue based on cost would not work by itself since
the algorithm still returns too early and does not update node costs

– Making the appropriate modifications, we have uniform cost search

Uniform Cost Search

Figure 3: UCS algorithm.

• Explores nodes in order of cost
• Completeness: yes, if b is finite and if all edge weights are greater than equal to some positive ϵ
• Optimality: yes; every time we pop some node u, we can guarantee that the path we found to u is

optimal, provided weights are positive
– This can be proven by induction

• Time complexity: O(b1+ C∗
ϵ ) where C∗ is the optimal cost

– Since the optimal cost is C∗ and the cost so far increases by at least ϵ at every step, we take at

3



most C∗

ϵ
+ 1 steps

• Space complexity: O(b1+ C∗
ϵ ) by the same logic

Depth First Search

Figure 4: DFS tree search algorithm.

• Explores the deepest discovered but unexplored node first
• To minimize memory usage, we don’t store the set of explored nodes (i.e. use a tree search)
• Completeness: only if the search space is finite
• Optimality: no
• Time complexity: O(bm+1)
• Space complexity: O(bm)
• How do we remedy the loss of completeness?

– Depth limited search (DLS): restricting the depth of the search to a certain cutoff
* This is complete only if d is less than or equal to the cutoff
* But we don’t know d beforehand

– Iterative deepening search (IDS): iteratively increasing the cutoff depth, if a complete search is
performed and no goal is found

Figure 5: Summary of search algorithms.

4


	Lecture 1, Jan 9, 2024
	Rational Agents
	Goal-Based Agents

	Search Algorithms
	Breadth First Search
	Uniform Cost Search
	Depth First Search



