Lecture 1, Jan 9, 2024

Rational Agents

- An *agent* is anything that perceives the *environment* through *sensors* and acts upon the environment through *actuators*; e.g. humans and robots are both agents
 - The agent function maps from percept histories/sequences to actions: $f: P^* \mapsto A$
 - The agent *program* runs on the physical *architecture* to perform f
 - The transition model is a function s' = T(s, a) that maps the current state and an action to the next state
 - Example: for a robot that mops the room:
 - * Environment: the location of the robot and the status of each location (clean and dirty)
 - * Percept: current location and the status of the location
 - * Actions: move around and mop the current location
 - * The agent's function would map sequences of percepts to actions, as in the figure below

Percepts Sequence	Action1	Action ₂
[A, clean]	Right	Мор
[A, dirty]	Clean	Right
[B, clean]	Left	Мор
[B, dirty]	Clean	Left
[A, clean],[A, clean]	Right	Clean
[A, clean],[A, dirty]	Clean	Right

Figure 1: Example agent function for the mop robot.

- A *rational* agent is an agent that does the "right thing", based on all the information it has access to Rational agents are not omniscient; the "right thing" is conditioned on the information and
 - resources the agent can access
 - To define this, we define some *performance measure*, an objective criterion for measuring the success of the agent's behaviour
- Properties of task environments:
 - A task is *fully observable* if sensors provide access to the complete state of the environment at all times; otherwise it is *partially observable*
 - A task is *deterministic* if the next state of the environment is completely determined by the current state and the agent's action; otherwise it is *stochastic*
 - A task is *dynamic* if the environment can change while the agent is deliberating; otherwise it is *dynamic*
 - A task is *discrete* if the number of states, percepts, actions is finite; otherwise it is *continuous*
 - A task is *single-agent* if the agent operates by itself; otherwise it is *multi-agent*
- Types of agent programs:
 - Simple reflex: actions only depend on percept
 - *Model-based reflex*: action depend on internal state (based on percept history), model of the world, and percept
 - *Goal-based*: action depends on current state, percepts, model of the world, and tries to achieve a desired goal
 - Utility-based: tries to achieve multiple conflicting goals; uses a weighted combination of goals

Goal-Based Agents

- Example: finding the shortest route between two locations
 - States: locations
 - Actions: moving between locations

- Transition model: taking current location and direction that we move in, outputting the new location
- Goal test: whether we are at the location we want to go
- Cost function: length of route
- In general, we want to keep the action simple, and restrict what we can do in the transition model

Search Algorithms

- Many problems can be modelled as having an initial node, a successor function S(x) giving the set of new nodes from a node x in a single action, the goal test function G(x), and the action cost function C(x; a; y) giving the cost of moving from x to y using action a
 - A state represents a physical configuration, while a node is a part of a search tree
 - Each node includes the state, parent node, action, and path cost
 - Two different nodes are allowed to represent the same state!
 - In most settings, representing the entire graph in memory is impractical, so implicit representations that only keep a part of the graph at a time are used
- To solve this problem, we can start at the initial node and keep searching until we reach a goal node
 - The *frontier* is the set of all nodes that we have seen but haven't explored
 - $\,^*\,$ At initialization this is just the initial node
 - At each iteration we can choose a node from the frontier, explore it, and add its neighbours to the frontier
 - Tree search algorithm don't store information about visited states, so can end up in cycles
 - *Graph search algorithms* keep track of visited nodes so explored nodes are not revisited (aka cycle checking)
- How do we evaluate an algorithm?
 - Completeness: whether the algorithm always finds a solution, if one exists
 - Optimality: is the solution least-cost?
 - *Time complexity*: how long does it take to find a solution?
 - Space complexity: how many nodes do we need to store in memory?
- To quantify the problem we use the following parameters:
 - Branch width b: maximum number of successors on each node
 - * Unless otherwise stated, assuming that this is finite, i.e. at every state there are a finite number of states we can go to
 - Depth d: depth of shallowest goal node
 - * This is usually finite
 - Max depth m: max depth of any node from the start node
 - * This is often infinite (but countably infinite) e.g. if the workspace of the robot is the entirety of Mars
 - We don't know the number of nodes in advance so instead of we use these parameters, since they are local properties
- Note worst-case scenario analysis does not capture the graph structure; performance in the real world is often highly problem-dependent, so the best algorithm will also be
- Uninformed search algorithms use only the problem input; no domain information is used
 - The problem is represented either explicitly or implicitly as graphs
 - Includes BFS, DFS, uniform-cost search

Breadth First Search

- Explores nodes in order of their discovery, using a FIFO queue
- Completeness: yes; even for infinitely large graphs, as long as b and d are finite, the goal will eventually be reached
- Time complexity: $O(b^{d+1})$
 - At each node we explore at most b new nodes
- Space complexity: $O(b^{d+1})$

Algorithm 1 Breadth First Search: FindPathToGoal(*u*)

1. <i>F</i>	(Frontier) \leftarrow Queue(u)	// FIFO	
2. <i>E</i>	(Explored) $\leftarrow u$		
3. while F is not empty ${f do}$			
4.	$u \leftarrow F.{\sf pop}()$		
5.	for all children v of $u\ {\rm do}$		
6.	if GoalTest(v) then		
7.	return path(v)		
8.	else		
9.	if $v ot\in E$ then		
10.	E.add(v)		
11.	F.push(v)		
12. return Failure			

Figure 2: BFS algorithm.

- This is the max size of the frontier

- Optimality: no; the result is not optimal in cost, but it is optimal in the number of state transitions

 Note simply replacing the queue by a priority queue based on cost would not work by itself since
 - the algorithm still returns too early and does not update node costs
 - Making the appropriate modifications, we have uniform cost search

Uniform Cost Search

Algorithm 3 Uniform Cost Search(UCS): FindPathToGoal(u)

1. $F(Frontier) \leftarrow PriorityQueue(u)$	// lowest cost node out first			
2. $E(Explored) \leftarrow u$				
3. $\hat{g}[u] \gets 0$				
4. while F is not empty do				
5. $u \leftarrow F.pop()$				
6. if GoalTest(<i>u</i>) then				
7. return path(u)				
8. E .add(u)				
9. for all children v of u do				
10. if $v \notin E$ then				
11. if $v \in F$ then				
12. $\hat{g}[v] = min(\hat{g}[v], \hat{g}[u] + c($	(u, v))			
13. else				
14. $F.push(v)$				
15. $\hat{g}[v] = \hat{g}[u] + c(u,v)$				
16. return Failure				

Figure 3: UCS algorithm.

- Explores nodes in order of cost
- Completeness: yes, if b is finite and if all edge weights are greater than equal to some positive ϵ
- Optimality: yes; every time we pop some node u, we can guarantee that the path we found to u is optimal, provided weights are positive
 - This can be proven by induction
- Time complexity: $O(b^{1+\frac{C^*}{\epsilon}})$ where C^* is the optimal cost
 - Since the optimal cost is C^* and the cost so far increases by at least ϵ at every step, we take at

- most $\frac{C^*}{\epsilon} + 1$ steps
- Space complexity: $O(b^{1+\frac{C^*}{\epsilon}})$ by the same logic

Depth First Search

Algorithm 4 Depth First Search(DFS)-TreeSearch: FindPathToGoal(u)

1. $F(Frontier) \leftarrow Stack(u)$				
2. while F is not empty do				
3. $u \leftarrow F$.pop()				
4. if GoalTest(<i>u</i>) then				
5. return path(<i>u</i>)				
δ. for all children v of u do				
7. $F.push(v)$				
8. return Failure				

Figure 4: DFS tree search algorithm.

- Explores the deepest discovered but unexplored node first
- To minimize memory usage, we don't store the set of explored nodes (i.e. use a tree search)
- Completeness: only if the search space is finite
- Optimality: no
- Time complexity: $O(b^{m+1})$
- Space complexity: O(bm)
- How do we remedy the loss of completeness?
 - Depth limited search (DLS): restricting the depth of the search to a certain cutoff * This is complete only if d is less than or equal to the cutoff
 - * But we don't know d beforehand
 - Iterative deepening search (IDS): iteratively increasing the cutoff depth, if a complete search is performed and no goal is found

Property	BFS	UCS	DFS	IDS
Complete	Yes ¹	Yes ²	No	Yes
Optimal	No ³	Yes	No	No
Time	$\mathcal{O}(b^{d+1})$	$\mathcal{O}^{\left(b^{1+\left\lfloor\frac{C^{*}}{\varepsilon}\right\rfloor}\right)}$	$\mathcal{O}(b^{m+1})$	$\mathcal{O}(b^{d+1})$
Space	$\mathcal{O}(b^{d+1})$	$\mathcal{O}\left(\boldsymbol{b}^{1+\left\lfloor \frac{C^{*}}{\varepsilon}\right\rfloor}\right)$	$\mathcal{O}(bm)$	$\mathcal{O}(bd)$

- 1. if *b* is finite.
- 2. If *b* is finite and step $cost \ge \varepsilon$

Figure 5: Summary of search algorithms.