
Lecture 6, Feb 12, 2024
Unsupervised Learning

• Supervised learning requires large amounts of labelled data, which is expensive to obtain
• In unsupervised learning, we look for patterns in the data without being explicitly provided labels

– e.g. clustering, probability density estimation, dimensionality reduction
• With self-supervised learning, the labels are generated automatically form the data

– e.g. masking out a part of an image and getting the model to fill it in
• With semi-supervised learning the data mostly consists of unlabelled samples, but a small subset is

labelled

Autoencoders
• Autoencoders aim to find efficient representations of the input that contains enough information to

reconstruct it
• Consists of two components:

– Encoder : converts the input to an internal embedding, i.e. a lower dimension representation
* Performs dimensionality reduction

– Decoder : converts the embedding back to the same dimensionality as the input
* This is a generative task

• The network has a sideways hourglass shape, with layers getting progressively smaller until we reach
the bottleneck layer, and then getting bigger until we match the input dimension

– All the information from the input is squeezed through the low-dimensional bottleneck layer
– By introducing this low-dimensional layer, the model is forced to learn only the most important

parts of the input and drop unnecessary features
– The choice of the number of neurons in this layer is an important parameter
– If the bottleneck layer is too small, not enough information will be retained to reconstruct the

input
– Autoencoders are often symmetric, but this is not a requirement

Figure 1: Illustration of an autoencoder.

• To train these models, we use an MSE loss (nn.MSELoss) and compare the output against the input
• Common applications:

– Feature extraction
– Unsupervised pre-training

* The encoder brings the data into a (more) separable form
* Using the encoder and attaching a classifier to it for classification tasks

– Dimensionality reduction
– Generating new data

* Sampling in the latent space and using the decoder to generate data
– Anomaly detection

* Autoencoders are bad at reconstructing outliers

1



* If the autoencoder generates nonsensical output, there’s a high chance the input is an outlier
• Compare the input and its reconstruction generated by the model to assess the model performance

– Perfect reconstruction can be a sign of overfitting
• We can add noise to the input image and make the model reconstruct the image without noise

– This forces the model to only learn useful features
– This prevents the autoencoder to simply copy its inputs, so it helps with overfitting

• We can explicit the structure in the embedding space and sample from it in order to generate new data
– This relies on the network mapping similar inputs to similar embeddings
– The simplest way to do this is to interpolate between the embeddings of two known inputs

* e.g. passing two numbers through the encoders, interpolating between the embeddings and
passing this through the decoder to obtain an image between the two numbers

• However, if we just sample a random point in the embedding space, we will likely get a nonsensical
result

– The embedding space can become disjoint and non-continuous

Variational Autoencoders (VAEs)

• Addresses the issues with generating nonsensical results by imposing a constraint on the latent space so
that it becomes smooth

– Can be thought of as an autoencoder that is trained so that the latent space is regular enough for
data generation

• Instead of a fixed embedding the encoder generates a normal distribution with some mean and standard
deviation, from which the embedding is randomly sampled; the decoder then takes the embedding
sampled from the distribution given by the encoder and tries to reconstruct the input

– Mathematically the encoder provides a prior distribution p(z|x) for embeddings z conditioned in
input x; then embeddings are sampled from this distribution and reconstructed by the decoder

– The encoder will give a mean vector and covariance matrix as its output, which encodes the
distribution

– Practically to obtain the input to the decoder, we sample a deviation ϵ ∼ N (0, 1), scale this up by
the variance, and add it to the mean to produce a sample from the latent space

– This allows us to compute the gradient by regarding ϵ as a constant

Figure 2: Illustration of a variational autoencoder.

• We want the latent space to be regular : continuous (points that are close should generate outputs that
are similar) and complete (points should not generate meaningless data)

– The model can overfit and reduce to a simple autoencoder in 2 ways, either by giving very low
variances (so the output is essentially a fixed point), or having very different means (so regions
corresponding to different inputs are very far apart); both will lead to an irregular latent space

– Therefore we want to force the priors generated by the encoder to have a certain variance and
have means that are close together

– To do this, we add a regularization term in the loss function that compares the prior against a
standard normal distribution

2



* Use Kullback-Leibler (KL) divergence: DKL(P ∥ Q) =
∑
x∈X

p(x) log
(

p(x)
q(x)

)

* For a multivariate Gaussian and standard normal: 1
2

N∑
i=1

(
µ2

i + σ2
i − (1 + log(σ2

i ))
)

• The total loss is the sum of the reconstruction loss and the DL divergence (regularization) term
– These are two conflicting goals that together prevent overfitting

• The variances in the output of the encoder give us bounds for sampling the latent space, so that our
generated results will look a certain way (e.g. a certain digit instead of a merge of two digits)

Convolutional Autoencoders

• For convolutional networks, we now have the problem of going from the embedding back to the image
and undoing our convolutions

– This is the problem of upsampling
– We could simply not use convolutions and just have ANN layers, but this has the same downsides

as an ANN vs CNN
• Transposed convolutions are the inverse of convolutions and can map 1 pixel to k × k pixels

– For each pixel, the entire kernel is multiplied by the pixel value and added to the output image;
when outputs overlap they are summed

* Similar to using a stamp
• The output dimension is given by o = s(i − 1) + (k − 1) − 2p + po + 1 where po is the output padding

– Padding works in the opposite way; since the output of transposed convolution is larger than the
input, a positive padding will chop off the edges of the output and reduce its size

– The output size could be ambiguous for s > 1, so the output padding resolves this by effectively
increasing the output shape on one side

* e.g. for a normal convolution, both 7 × 7 and 8 × 8 gives a 3 × 3 output for k = 3, s = 2; when
going backwards, output padding allows us to determine which output size to pick

* Used to determine output shape only (doesn’t actually pad zeros to the output)
– This allows us to get the exact same size back by applying a convolution and then a transposed

convolution
• In PyTorch this is performed using nn.ConvTranspose2d(in_channels, out_channels,

kernel_size)
– For the same parameters, passing the result of nn.Conv2d() to nn.ConvTranspose2d() or vice

versa will give back the same shape

Figure 3: Transposed convolutions.

Pre-Training with Autoencoders

• We can first train the autoencoder on unlabelled data, then take only the encoder, attach an ANN, and
use it to train a classification problem

• The encoder portion is used as a feature detector like in the case of transfer learning with CNNs
• During the supervised classification problem training the weights in the encoder are further fine-tuned

– After this, it can be reinserted back into the autoencoder for better performance

3



• This allows for semi-supervised learning; use the unlabelled data to train the autoencoder, and then use
the labelled data to train the classifier

– Since the classifier is smaller and will have access to the pre-trained encoder, it will require far less
data to train

Self-Supervised Learning

• Proxy-supervised tasks are tasks such that the labels can be generated automatically for free and solving
the task requires the model to “understand” the content

– We want to devise the tasks such that the model is forced to learn robust representations
– e.g. rotating an image and having the network guess how much the image was rotated from the

original (RotNet)
* For this task, the network needs to learn the concepts of the objects in the images to see that

they have been rotated
• In contrastive learning we have pairs of samples that are fed to the network, and the loss is computed

in latent space, with the embeddings expected to be equal
– We train the network so that “similar” input results in similar embeddings and different inputs

result in embeddings that are far apart
* This forces the model to learn patterns of the input that stayed the same despite the augmen-

tations
– The other samples are generated through data augmentation methods from the original samples,

e.g. inverting the image, rotating it, etc
– Unlike autoencoders, the embeddings generated are not used to reconstruct the input, but instead

used for discriminating between samples
• Encoder layers trained through self-supervised learning can be used in transfer learning

Figure 4: SimCLR architecture for contrastive learning.

4


	Lecture 6, Feb 12, 2024
	Unsupervised Learning
	Autoencoders
	Variational Autoencoders (VAEs)
	Convolutional Autoencoders
	Pre-Training with Autoencoders
	Self-Supervised Learning



