
Lecture 4, Jan 29, 2024
Convolutional Neural Networks (CNNs)

• Using a regular ANN has disadvantages:
– By flattening the image we lose geometric information about what pixels are next to each other
– We are restricted to a specific image size (need to retrain the entire model if we change it)
– The data needs to be preprocessed in a specific way (e.g. centered)
– Computational complexity grows very quickly as layers get bigger

The Convolution Operator

• A convolution is an operation that slides a kernel across an image, taking a weighted sum of the part of
the image overlapping with the kernel for every kernel position

• y[m, n] = I[m, n] ∗ K[m, n] =
∞∑

j=−∞

∞∑
i=−∞

I[i, j]K[m − i, n − j]

• Convolutional filters can achieve various effects on an image, including blurring, edge detection, etc
• Kernels used to be hand-crafted, but in a CNN we make the network learn the kernel
• Applying a convolution to an image reduces the size of the image, unless we apply padding to the edges

– We can add zeroes around the border to make the output the same size, or even bigger if we desire
– Our feature space retains the same dimensionality and we don’t lose any information around the

edges

Figure 1: Illustration of padding.

• We can also change the stride, or how much the kernel moves each time
– Increasing the stride reduces the output resolution and can act as a form of pooling
– Lowering the output dimension can lower the number of parameters we need to learn

• Each output dimension has an output size of o =
⌊

i + 2p − k

s

⌋
+ 1 where i is the image dimension, k is

the kernel dimension, p is the amount of padding (each side) and s is the stride
– Note different dimensions might have different amounts of padding, stride, etc

Convolutional Neural Networks

• Use convolutional filters in the networks, where the kernels are learned by the network
• CNNs use locally connected layers (kernels act on a small, local region of the image) and use weight

sharing (the same local features are detected across the entire image)
– This retains the geometric information in the image that would otherwise be lost by flattening
– Weight sharing significantly reduces the number of parameters that need to be learned

• The later layers will learn more abstract/higher level features and there will be fewer neurons
– At the end we flatten the features and pass to an ANN for classification
– At this point the features are very abstract and no longer geometric, so we don’t lose information
– The CNN layers are the encoder, which extracts features from the image, while the ANN layers

are the classifier or head, which classifies the image based on features
• The network learns all the weights in the kernel, as well as a bias for each kernel

1



Figure 2: Illustration of CNNs vs ANNs for classification.

– The weights are randomly initialized
• Images and convolutional layers can have multiple channels

– For colour images, the kernel becomes a 3-dimensional tensor, operating on all 3 channels at the
same time; the image would be 3 × i × i and kernel 3 × k × k

* This is like applying a separate kernel to each channel and then summing the results for each
pixel

– To detect many different features, we can have multiple kernels (increasing the filter depth)
* The number of kernels is the number of output channels – each kernel produces its own output

channel
* Each kernel will learn a different set of features because they are randomly initialized, so upon

gradient descent they will move towards detecting different features
– e.g. colour input image of 3 × 28 × 28 using kernels 5 × 3 × 8 × 8 has 3 input channels, 5 output

channels and 5 × 3 × 8 × 8 + 5 trainable weights (including biases)
• As we go through the layers, the filter depth increases, and the feature map size decreases; i.e. we have

more sets of features that are each individually lower in resolution

Figure 3: Progression of convolutional layers in a network.

Pooling

• Pooling is a way to consolidate information, i.e. removing information not useful for the task
– This is like reducing the layer size before the final output layer in an ANN

• Pooling is essentially another convolution over the output, but the kernel is not learnable:
– Max pooling: taking the max value in the entire area that the kernel covers
– Average pooling: taking the average of all the values in the area the kernel covers

– Output dimension is given by o =
⌊

i − k

s

⌋
+ 1

2



Figure 4: Convolution for 3 × 5 × 5 input (1 padding), with 2 × 3 × 3 convolutional kernels.

• An alternative to pooling is to just use another convolution layer with a larger stride
– Since this kernel can be learned, it introduces more parameters
– This makes the model more powerful but increases computational cost

PyTorch Implementation

• Use nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding) to implement a
convolutional layer

– Default for stride is 1, padding is 0
– Specify integers to use the same across 2 dimensions, or make it a tuple for different parameters in

each dimension
• Use nn.MaxPool2d(kernel_size, stride) etc for pooling
• Once the convolutional layers are done we go back to using nn.Linear() to implement the ANN layers
• First apply the convolutional layer, then the activation function, then the pooling
• The training code stays the same whether it’s a CNN or ANN because PyTorch handles all the gradient

calculations

3


	Lecture 4, Jan 29, 2024
	Convolutional Neural Networks (CNNs)
	The Convolution Operator
	Convolutional Neural Networks
	Pooling
	PyTorch Implementation



