Lecture 4, Jan 29, 2024

Convolutional Neural Networks (CNNs)

e Using a regular ANN has disadvantages:
— By flattening the image we lose geometric information about what pixels are next to each other
— We are restricted to a specific image size (need to retrain the entire model if we change it)
— The data needs to be preprocessed in a specific way (e.g. centered)
— Computational complexity grows very quickly as layers get bigger

The Convolution Operator

e A convolution is an operation that slides a kernel across an image, taking a weighted sum of the part of
the image overlapping with the kernel for every kernel position

o0 o0
o ylmn] = Ifm,n]« Kfm,n] = > Ifi,j]K[m —i,n—j]
Jj=—001=—00
e Convolutional filters can achieve various effects on an image, including blurring, edge detection, etc
e Kernels used to be hand-crafted, but in a CNN we make the network learn the kernel
e Applying a convolution to an image reduces the size of the image, unless we apply padding to the edges
— We can add zeroes around the border to make the output the same size, or even bigger if we desire
— Our feature space retains the same dimensionality and we don’t lose any information around the
edges

Figure 1: Hlustration of padding.

e We can also change the stride, or how much the kernel moves each time
— Increasing the stride reduces the output resolution and can act as a form of pooling
— Lowering the output dimension can lower the number of parameters we need to learn
i1+2p—Fk
s
the kernel dimension, p is the amount of padding (each side) and s is the stride
— Note different dimensions might have different amounts of padding, stride, etc

e Each output dimension has an output size of 0o = + 1 where ¢ is the image dimension, k is

Convolutional Neural Networks

o Use convolutional filters in the networks, where the kernels are learned by the network
o CNNs use locally connected layers (kernels act on a small, local region of the image) and use weight
sharing (the same local features are detected across the entire image)
— This retains the geometric information in the image that would otherwise be lost by flattening
— Weight sharing significantly reduces the number of parameters that need to be learned

o The later layers will learn more abstract/higher level features and there will be fewer neurons
— At the end we flatten the features and pass to an ANN for classification
— At this point the features are very abstract and no longer geometric, so we don’t lose information
— The CNN layers are the encoder, which extracts features from the image, while the ANN layers
are the classifier or head, which classifies the image based on features
e The network learns all the weights in the kernel, as well as a bias for each kernel

— cAR
— TRUCK
— VAN

LT A -~

uLLY

FuLL
Lot CONNECTED

SOFTMAX

CLASSIFICATION

Z

I] :7'—»; =T O — E—E

g :
e

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN

-

[J — sicvete

FULLY
conNEcTep SOFTMAX

FEATURE LEARNING CLASSIFICATION

Figure 2: Illustration of CNNs vs ANNs for classification.

— The weights are randomly initialized
e Images and convolutional layers can have multiple channels
— For colour images, the kernel becomes a 3-dimensional tensor, operating on all 3 channels at the
same time; the image would be 3 x ¢ x ¢ and kernel 3 X k x k
* This is like applying a separate kernel to each channel and then summing the results for each
pixel
— To detect many different features, we can have multiple kernels (increasing the filter depth)
* The number of kernels is the number of output channels — each kernel produces its own output
channel
* Each kernel will learn a different set of features because they are randomly initialized, so upon
gradient descent they will move towards detecting different features
— e.g. colour input image of 3 x 28 x 28 using kernels 5 x 3 x 8 x 8 has 3 input channels, 5 output
channels and 5 x 3 x 8 x 8 + 5 trainable weights (including biases)
e As we go through the layers, the filter depth increases, and the feature map size decreases; i.e. we have
more sets of features that are each individually lower in resolution

input convl pooll conv2 pool2 hidden4 output

D: Dg Con\féllltlltion
L[—=

Convolution subsample Convolution subsample

Convolution

Figure 3: Progression of convolutional layers in a network.

Pooling

e Pooling is a way to consolidate information, i.e. removing information not useful for the task
— This is like reducing the layer size before the final output layer in an ANN

e Pooling is essentially another convolution over the output, but the kernel is not learnable:
— Max pooling: taking the max value in the entire area that the kernel covers
— Average pooling: taking the average of all the values in the area the kernel covers

—k
— Output dimension is given by o = Z—J +1
s

Input Volume (+pad 1) (7x7x3)

Filter WO (3x3x3)

x[:,3,0] w0[:,:,0
ofofoJo o0 @ © 1o 1
ofofo]r o 2 o oo |1
oftfo]z o t o T
0102200 WO[:,:,1
R ol 21 (03 (50 @l O [O 24
ol B3 i B 0 Lt
00 040 0 [o]r]pe
7,1 wo[s, 72
ofofoJo o]
oz T T ! 1o
0 12 | o J-1][o
G S =l A Bias b{1x1x1)
ol 2 22 2 [0 bO{7,1,0]
ol [0 172" [0 1
0 0 o 0
1,2,2)
oo Jofo o 0
0241 |1 ()
1o 100
B 0010000
i i {6 (2 i 0 [
001 25 125 i 0 e [
0000000

Filter W1 (3x3x3)
wlf:,:,0]
01 -1

0 -10
0 -1 1

-

Bias bl (1x1x1)
blf:,:,0]
[}]

Output Volume (3x3x2)
ofz,:,0]
23"

3 T B
8 10 -3

of2521]
BN s

31 0
3 -8 5

Figure 4: Convolution for 3 x 5 x 5 input (1 padding), with 2 x 3 x 3 convolutional kernels.

e An alternative to pooling is to just use another convolution layer with a larger stride
— Since this kernel can be learned, it introduces more parameters
— This makes the model more powerful but increases computational cost

PyTorch Implementation

Use nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding) to implement a

convolutional layer

— Default for stride is 1, padding is 0
— Specify integers to use the same across 2 dimensions, or make it a tuple for different parameters in

each dimension

Use nn.MaxPool2d(kernel_size, stride) etc for pooling

Once the convolutional layers are done we go back to using nn.Linear () to implement the ANN layers

First apply the convolutional layer, then the activation function, then the pooling

The training code stays the same whether it’s a CNN or ANN because PyTorch handles all the gradient

calculations

	Lecture 4, Jan 29, 2024
	Convolutional Neural Networks (CNNs)
	The Convolution Operator
	Convolutional Neural Networks
	Pooling
	PyTorch Implementation

