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Artificial Neural Networks
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Figure 1: The artificial neuron model.

e Each neuron takes inputs «, has weights w and bias b, and an activation function f which produces
the output y
—y=fw-z+Dh)
— In a fully connected neural network, the inputs of the next layer are taken as all of the outputs of
the previous layer
e The activation function takes the weighted sum of the input and produces an output
— e.g. for a linear activation function y = w - & + b, this draws out a hyperplane which splits the
input space in 2; the w are the slopes of the plane and b controls how far it is from the origin
* This can be used for a classification task where the data is linearly separable by drawing a
line that separates the data categories
e Linear activation functions are not useful because composing any number of them will still result in
another linear function, so there is no benefit to having a more complex network
— Most data in reality is not linearly separable, so linear activation functions can never work even
with many layers
e Example activation functions:
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— Perceptron: f(z) = sgn(z) = or f(z) = {

1 x>0 1 >0

* 0 is the decision boundary, where the output of the neuron changes
* Used in early artificial neurons and no longer used today

* Problem: Not differentiable, continuous or smooth

1
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— Sigmoid: a family including f(x) = tanh(z) (hyperbolic tangent) or f(z) = =
e

* Maps the entire range of input into an output range of [—1, 1] or [0, 1]
Commonly used before 2012, still used sometimes today
Differentiable, smooth, and continuous
Problem: large inputs saturate the neuron, which kills the gradient, resulting in very slow
learning; also not as performant as some other options
— ReLU (Rectified Linear Unit): f(z) = max(0, x)
* The derivative at zero is defined as 0
* Differentiable (and very fast to compute derivatives), continuous
* The family also includes other functions:
x x>0
cx x<0
— Use a small constant slope for values less than zero
o Parametric ReLU (PReLU) makes the slope for negative values a tunable parameter for
the network
o SiLU: f(z) = zo(x) = T5e=

— Continuous approximation of ReLU

* % ¥

e Leaky ReLU: x < 0: f(l‘) =

xT



o SoftPlus: f(x) = %log(l + €P7)

— Another continuous approximation
— Often gives better performance than regular ReLU but possibly slower to train
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Training Neural Networks

o Training a neuron is the process of selecting the weights and bias of the neuron so the network does
what we want
— Initially the weights and biases of each neuron is randomized
— Note we will refer to all parameters as “weights”, including the bias term
e In general, training a neuron involves the following steps:
1. Make a prediction for some input data x: y = M (w;x)
2. Compare the correct output with the predicted output to compute the loss: E = loss(y, t)
3. Adjust the weights to make the prediction closer to the ground truth, i.e. minimize the error
4. Repeat until the level of error is acceptable
o Training involves a forward pass (given input, compute the output), which is used in both training and
inference, and a backward pass (given the output and loss, find the effect of each weight on the loss)

Loss

e The loss function is a measure of performance of the network; it computes how bad predictions are
compared to ground truth labels
— The larger the loss, the worse the network’s performance is
— We want to compute the loss over all the input data and take the average
e To compare against the ground truth label, we first have to convert the label and the output of the
network into matching forms
— A softmaz function normalizes the network output into a categorical probability distribution; this
is used for single-label classification tasks
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* This converts the non-normalized output from the network into a probability distribution that
sums to 1

* The network’s output before passing through any activation is called logits
— Then use a one-hot encoding to map category labels to a vector representation; the element
representing the category of a label is 1, while all other labels are 0
* This can also be interpreted as a probability distribution
o Example loss functions:
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— Mean squared error (MSE): N Z(yn —t,)?
n=1
* N training samples, with network predictions y, and true labels ¢,

* Used mainly for regression tasks because it doesn’t work well with probabilities
N K
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— Cross entropy (CE): N Z Zt”vk log(Yn.k)
n=1k=1
* N training samples, K classes (¢, 5 is the probability of training sample n being in category k)

* Used for classification tasks since it works on probabilities
N

1
— Binary cross entropy (BCE): N Z (tn log(yn) + (1 —t,) log(1 — yn))

n=1
* Used for binary classification tasks, where the output can either be 0 or 1
* A special case of the cross entropy loss function

Gradient Descent

o Ultimately training a neural network is an optimization problem; we want to find the minimum of the
loss function by adjusting the weights of the network
— This can be accomplished using gradient descent

e When training we want to find how changing each weight of the neuron affects the final output,

i.e. finding
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o Once we find the gradient, the weights are updated as w§ = wzl — Awy; = wj»i

— v is the learning rate, or step size of the gradient descent
— In the most simple case, 7 is set to a constant (adaptive size methods also exist)
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Figure 2: Setup for example problem.

1
+ Example: consider MSE loss E = (y —t)? with sigmoid activation f(z) = 1_'_7_%; how do we compute
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— Multiplying this together: aa— =2z,(y—t)(1 —y)y
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The gradients are easy to find for layers that are next to the output, but for intermediate layers this is
requires backpropagation

Network Architecture

Having a single decision boundary is insufficient for most problems, so having multiple layers is necessary
As the number of layers approaches infinity, a neural network approaches a universal function approxi-
mator
However for deeper networks, computing the gradient is harder
— The problem of finding these gradients is the credit assignment problem — how much influence does
each weight have on the error?
— This is solved by backpropagation
With multiple layers, we can think of each layer picking out features of the data that get higher and
higher in level with deeper layers
— The complex, non-linearly separable data is processed by earlier layers into a form that is linearly
separable at the final output layer
Feed-forward network: information only flows forward from one layer to a later layer, from input to
output
Fully-connected network: each neuron takes its input from all neurons in the previous layer; i.e. Neurons
between adjacent layers are fully connected
The total number of layers is the number of hidden layers plus the output layer
— We don’t count the input layer (because it’s decided by the input data format, so we don’t have
control), but we do count the output layer
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Figure 3: Example 2- and 3-layer neural networks.
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