Lecture 2, Jan 15, 2024

Artificial Neural Networks

Neurons

1 w1
synapse
w1y

axon from a neuron

cell body

Zw,xl +b
i

output axon
activation
function

Figure 1: The artificial neuron model.

e Each neuron takes inputs «, has weights w and bias b, and an activation function f which produces
the output y
—y=fw-z+Dh)
— In a fully connected neural network, the inputs of the next layer are taken as all of the outputs of
the previous layer
e The activation function takes the weighted sum of the input and produces an output
— e.g. for a linear activation function y = w - & + b, this draws out a hyperplane which splits the
input space in 2; the w are the slopes of the plane and b controls how far it is from the origin
* This can be used for a classification task where the data is linearly separable by drawing a
line that separates the data categories
e Linear activation functions are not useful because composing any number of them will still result in
another linear function, so there is no benefit to having a more complex network
— Most data in reality is not linearly separable, so linear activation functions can never work even
with many layers
e Example activation functions:

-1 <0 _ 0 <0

— Perceptron: f(z) = sgn(z) = or f(z) = {

1 x>0 1 >0

* 0 is the decision boundary, where the output of the neuron changes
* Used in early artificial neurons and no longer used today

* Problem: Not differentiable, continuous or smooth

1
——— (logistic)

— Sigmoid: a family including f(x) = tanh(z) (hyperbolic tangent) or f(z) = =
e

* Maps the entire range of input into an output range of [—1, 1] or [0, 1]
Commonly used before 2012, still used sometimes today
Differentiable, smooth, and continuous
Problem: large inputs saturate the neuron, which kills the gradient, resulting in very slow
learning; also not as performant as some other options
— ReLU (Rectified Linear Unit): f(z) = max(0, x)
* The derivative at zero is defined as 0
* Differentiable (and very fast to compute derivatives), continuous
* The family also includes other functions:
x x>0
cx x<0
— Use a small constant slope for values less than zero
o Parametric ReLU (PReLU) makes the slope for negative values a tunable parameter for
the network
o SiLU: f(z) = zo(x) = T5e=

— Continuous approximation of ReLU

* % ¥

e Leaky ReLU: x < 0: f(l‘) =

xT

o SoftPlus: f(x) = %log(l + €P7)

— Another continuous approximation
— Often gives better performance than regular ReLU but possibly slower to train

ReLU activation function

SiLU activation function

output
output

tanh(x)
°
o
.
°

input input

" -05 PReLU activation function Softplus activation function

-8 -6 -4 -2 0 2 4 6

©

output
output

Training Neural Networks

o Training a neuron is the process of selecting the weights and bias of the neuron so the network does
what we want
— Initially the weights and biases of each neuron is randomized
— Note we will refer to all parameters as “weights”, including the bias term
e In general, training a neuron involves the following steps:
1. Make a prediction for some input data x: y = M (w;x)
2. Compare the correct output with the predicted output to compute the loss: E = loss(y, t)
3. Adjust the weights to make the prediction closer to the ground truth, i.e. minimize the error
4. Repeat until the level of error is acceptable
o Training involves a forward pass (given input, compute the output), which is used in both training and
inference, and a backward pass (given the output and loss, find the effect of each weight on the loss)

Loss

e The loss function is a measure of performance of the network; it computes how bad predictions are
compared to ground truth labels
— The larger the loss, the worse the network’s performance is
— We want to compute the loss over all the input data and take the average
e To compare against the ground truth label, we first have to convert the label and the output of the
network into matching forms
— A softmaz function normalizes the network output into a categorical probability distribution; this
is used for single-label classification tasks

T4

e
* softmax(x;) = ———
' >y €7
* This converts the non-normalized output from the network into a probability distribution that
sums to 1

* The network’s output before passing through any activation is called logits
— Then use a one-hot encoding to map category labels to a vector representation; the element
representing the category of a label is 1, while all other labels are 0
* This can also be interpreted as a probability distribution
o Example loss functions:

N
1
— Mean squared error (MSE): N Z(yn —t,)?
n=1
* N training samples, with network predictions y, and true labels ¢,

* Used mainly for regression tasks because it doesn’t work well with probabilities
N K

1
— Cross entropy (CE): N Z Zt”vk log(Yn.k)
n=1k=1
* N training samples, K classes (¢, 5 is the probability of training sample n being in category k)

* Used for classification tasks since it works on probabilities
N

1
— Binary cross entropy (BCE): N Z (tn log(yn) + (1 —t,) log(1 — yn))

n=1
* Used for binary classification tasks, where the output can either be 0 or 1
* A special case of the cross entropy loss function

Gradient Descent

o Ultimately training a neural network is an optimization problem; we want to find the minimum of the
loss function by adjusting the weights of the network
— This can be accomplished using gradient descent

e When training we want to find how changing each weight of the neuron affects the final output,

i.e. finding
Wy
oF

+1 _
’yﬁwji

%

o Once we find the gradient, the weights are updated as w§ = wzl — Awy; = wj»i

— v is the learning rate, or step size of the gradient descent
— In the most simple case, 7 is set to a constant (adaptive size methods also exist)
Zo

€1

a= Z(wpwp +0b)

Figure 2: Setup for example problem.

1
+ Example: consider MSE loss E = (y —t)? with sigmoid activation f(z) = 1_'_7_%; how do we compute
e
oF ?
ow,

E E
— Using the chain rule: OF _ 6—@&

ow, dy da dw,

aE_ 0 5 B

67y_87y(y)" =2(y—1)

ay_ 0 1 B B
aa—aa[uea} y1-y)

:l'p

da 0
= Z WpTp + b

BT T D

E
— Multiplying this together: aa— =2z,(y—t)(1 —y)y
w

The gradients are easy to find for layers that are next to the output, but for intermediate layers this is
requires backpropagation

Network Architecture

Having a single decision boundary is insufficient for most problems, so having multiple layers is necessary
As the number of layers approaches infinity, a neural network approaches a universal function approxi-
mator
However for deeper networks, computing the gradient is harder
— The problem of finding these gradients is the credit assignment problem — how much influence does
each weight have on the error?
— This is solved by backpropagation
With multiple layers, we can think of each layer picking out features of the data that get higher and
higher in level with deeper layers
— The complex, non-linearly separable data is processed by earlier layers into a form that is linearly
separable at the final output layer
Feed-forward network: information only flows forward from one layer to a later layer, from input to
output
Fully-connected network: each neuron takes its input from all neurons in the previous layer; i.e. Neurons
between adjacent layers are fully connected
The total number of layers is the number of hidden layers plus the output layer
— We don’t count the input layer (because it’s decided by the input data format, so we don’t have
control), but we do count the output layer

output layer
input layer input layer
hidden layer hidden layer 1 hidden layer 2

2-layer neural network 3-layer neural network

Figure 3: Example 2- and 3-layer neural networks.

	Lecture 2, Jan 15, 2024
	Artificial Neural Networks
	Neurons
	Training Neural Networks

	Loss
	Gradient Descent
	Network Architecture

