
Lecture 2, Jan 15, 2024
Artificial Neural Networks
Neurons

Figure 1: The artificial neuron model.

• Each neuron takes inputs x, has weights w and bias b, and an activation function f which produces
the output y

– y = f(w · x + b)
– In a fully connected neural network, the inputs of the next layer are taken as all of the outputs of

the previous layer
• The activation function takes the weighted sum of the input and produces an output

– e.g. for a linear activation function y = w · x + b, this draws out a hyperplane which splits the
input space in 2; the w are the slopes of the plane and b controls how far it is from the origin

* This can be used for a classification task where the data is linearly separable by drawing a
line that separates the data categories

• Linear activation functions are not useful because composing any number of them will still result in
another linear function, so there is no benefit to having a more complex network

– Most data in reality is not linearly separable, so linear activation functions can never work even
with many layers

• Example activation functions:

– Perceptron: f(x) = sgn(x) =
{

−1 x < 0
1 x > 0

, or f(x) =
{

0 x < 0
1 x ≥ 0

* 0 is the decision boundary, where the output of the neuron changes
* Used in early artificial neurons and no longer used today
* Problem: Not differentiable, continuous or smooth

– Sigmoid: a family including f(x) = tanh(x) (hyperbolic tangent) or f(x) = 1
1 + e−x

(logistic)
* Maps the entire range of input into an output range of [−1, 1] or [0, 1]
* Commonly used before 2012, still used sometimes today
* Differentiable, smooth, and continuous
* Problem: large inputs saturate the neuron, which kills the gradient, resulting in very slow

learning; also not as performant as some other options
– ReLU (Rectified Linear Unit): f(x) = max(0, x)

* The derivative at zero is defined as 0
* Differentiable (and very fast to compute derivatives), continuous
* The family also includes other functions:

• Leaky ReLU: x < 0: f(x) =
{

x x ≥ 0
cx x < 0

– Use a small constant slope for values less than zero
• Parametric ReLU (PReLU) makes the slope for negative values a tunable parameter for

the network
• SiLU: f(x) = xσ(x) = x

1 + e−x

– Continuous approximation of ReLU

1



• SoftPlus: f(x) = 1
β

log(1 + eβx)
– Another continuous approximation
– Often gives better performance than regular ReLU but possibly slower to train

Training Neural Networks

• Training a neuron is the process of selecting the weights and bias of the neuron so the network does
what we want

– Initially the weights and biases of each neuron is randomized
– Note we will refer to all parameters as “weights”, including the bias term

• In general, training a neuron involves the following steps:
1. Make a prediction for some input data x: y = M(w; x)
2. Compare the correct output with the predicted output to compute the loss: E = loss(y, t)
3. Adjust the weights to make the prediction closer to the ground truth, i.e. minimize the error
4. Repeat until the level of error is acceptable

• Training involves a forward pass (given input, compute the output), which is used in both training and
inference, and a backward pass (given the output and loss, find the effect of each weight on the loss)

Loss
• The loss function is a measure of performance of the network; it computes how bad predictions are

compared to ground truth labels
– The larger the loss, the worse the network’s performance is
– We want to compute the loss over all the input data and take the average

• To compare against the ground truth label, we first have to convert the label and the output of the
network into matching forms

– A softmax function normalizes the network output into a categorical probability distribution; this
is used for single-label classification tasks

* softmax(xi) = exi∑K
k=1 exk

* This converts the non-normalized output from the network into a probability distribution that
sums to 1

* The network’s output before passing through any activation is called logits
– Then use a one-hot encoding to map category labels to a vector representation; the element

representing the category of a label is 1, while all other labels are 0
* This can also be interpreted as a probability distribution

• Example loss functions:

2



– Mean squared error (MSE): 1
N

N∑
n=1

(yn − tn)2

* N training samples, with network predictions yn and true labels tn

* Used mainly for regression tasks because it doesn’t work well with probabilities

– Cross entropy (CE): − 1
N

N∑
n=1

K∑
k=1

tn,k log(yn,k)

* N training samples, K classes (tn,k is the probability of training sample n being in category k)
* Used for classification tasks since it works on probabilities

– Binary cross entropy (BCE): 1
N

N∑
n=1

(tn log(yn) + (1 − tn) log(1 − yn))

* Used for binary classification tasks, where the output can either be 0 or 1
* A special case of the cross entropy loss function

Gradient Descent

• Ultimately training a neural network is an optimization problem; we want to find the minimum of the
loss function by adjusting the weights of the network

– This can be accomplished using gradient descent
• When training we want to find how changing each weight of the neuron affects the final output,

i.e. finding ∂E

∂wji

• Once we find the gradient, the weights are updated as wt+1
ji = wt

ji − ∆wji = wt
ji − γ

∂E

∂wji

– γ is the learning rate, or step size of the gradient descent
– In the most simple case, γ is set to a constant (adaptive size methods also exist)

Figure 2: Setup for example problem.

• Example: consider MSE loss E = (y − t)2 with sigmoid activation f(x) = 1
1 + e−x

; how do we compute
∂E

∂wp
?

– Using the chain rule: ∂E

∂wp
= ∂E

∂y

∂y

∂a

∂a

∂wp

– ∂E

∂y
= ∂

∂y
(y − t)2 = 2(y − t)

– ∂y

∂a
= ∂

∂a

[
1

1 + e−a

]
= y(1 − y)

– ∂a

∂wp
= ∂

∂wp

[∑
p

wpxp + b

]
= xp

3



– Multiplying this together: ∂E

∂wp
= 2xp(y − t)(1 − y)y

• The gradients are easy to find for layers that are next to the output, but for intermediate layers this is
requires backpropagation

Network Architecture

• Having a single decision boundary is insufficient for most problems, so having multiple layers is necessary
• As the number of layers approaches infinity, a neural network approaches a universal function approxi-

mator
• However for deeper networks, computing the gradient is harder

– The problem of finding these gradients is the credit assignment problem – how much influence does
each weight have on the error?

– This is solved by backpropagation
• With multiple layers, we can think of each layer picking out features of the data that get higher and

higher in level with deeper layers
– The complex, non-linearly separable data is processed by earlier layers into a form that is linearly

separable at the final output layer
• Feed-forward network: information only flows forward from one layer to a later layer, from input to

output
• Fully-connected network: each neuron takes its input from all neurons in the previous layer; i.e. Neurons

between adjacent layers are fully connected
• The total number of layers is the number of hidden layers plus the output layer

– We don’t count the input layer (because it’s decided by the input data format, so we don’t have
control), but we do count the output layer

Figure 3: Example 2- and 3-layer neural networks.

4


	Lecture 2, Jan 15, 2024
	Artificial Neural Networks
	Neurons
	Training Neural Networks

	Loss
	Gradient Descent
	Network Architecture



