
AER372 Control Systems Reference Sheet
Dynamic System Response

• The response of an LTI system to u(t) is y(t) =
� t

0
u(τ)h(t − τ) dτ = u(t) ∗ h(t) where h(t) is the

response of the system to the unit impulse δ(t); convolution has the properties:
1. Commutativity: x1(t) ∗ x2(t) = x2(t) ∗ x1(t)
2. Associativity: x1(t) ∗ [x2(t) ∗ x3(t)] = [x2(t) ∗ x2(t)] ∗ x3(t)
3. Distributivity: x1(t) ∗ [x2(t) + x3(t)] = x1(t) ∗ x2(t) + x2(t) ∗ x3(t)
4. Shift: x1(t) ∗ x2(t− T ) = x1(t− T ) ∗ x2(t)

5. Impulse: x(t) ∗ δ(t) =
� ∞

−∞
x(τ)δ(t− τ) = x(t)

6. Width: the convolution of a function covering a length of time T1 and another function covering
T2 covers a time of T1 + T2

• Laplace transform: F (s) = L {f(t)} ≡
� ∞

0−
f(t)e−st dt (see table of transforms)

Figure 1: Behaviour of a system according to its poles.

Figure 2: General feedback system.

• Transfer function definitions for a general feedback system:
– Closed-loop: T (s) = Y (s)

R(s) = Gc(s)Ga(s)G(s)
1 +Gc(s)Ga(s)G(s)H(s)

– Open-loop: L(s) = B(s)
Ea(s) = Gc(s)Ga(s)G(s)H(s)

– Error: E(s)
R(s) = R(s) − Y (s)

R(s) = 1 +Gc(s)Ga(s)G(s)(H(s) − 1)
1 +Gc(s)Ga(s)G(s)H(s)

* Note the E(s) here is not the same as Ea(s)

– Feedforward: Y (s)
Ea(s) = Gc(s)Ga(s)G(s)
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– Feedback: B(s)
R(s) = Gc(s)Ga(s)G(s)H(s)

1 +Gc(s)Ga(s)G(s)H(s)
– Sensitivity: S(s) = 1

1 +Gc(s)Ga(s)G(s)H(s)
• Stability:

– Bounded-Input-Bounded-Output (BIBO): any bounded input creates bounded output (no conver-
gence requirement)

– Asymptotic: any initial condition decays to 0
– Marginal/neural: (for zero input) any initial condition generates a bounded output

• Routh array: only LHP roots if all elements in the first column are positive; number of RHP roots is
equal to the number of sign changes

First-Order System

• H(s) = b

s+ a
=⇒ h(t) = be−at =⇒ ys(t) = b

a

(
1 − e−at

)
• DC gain: b

a

• Time constant: T = 1
a

• Rise time: tr ≈ 2.2T (10% to 90%)
• Settling time: ts ≈ 4.6

a
(0 to 99%)

Second-Order System

Figure 3: Pole locations for underdamped system.

• H(s) = ω2
n

s2 + 2ζωns+ ω2
n

; poles: −ζωn ± ωn

√
ζ2 − 1

– Overdamped: ζ > 1, then −σ = −ζωn ± ωn

√
ζ2 − 1 ⇐⇒ ωn =

√
σ1σ2, ζ = σ1 + σ2

2
√
σ1 + σ2

– Critically damped: ζ = 1, then σ = ωn

– Underdamped: ζ < 1, then σ = ζωn,ωd = ωn

√
1 − ζ2, poles at s = −σ ± jωd

* H(s) = σ2 + ω2
d

(s+ σ)2 + ω2
d

– Analysis below assumes underdamped case

• h(t) = σ2 + ω2
d

ωd
e−σt sin(ωdt) = ωn√

1 − ζ2
e−ζωnt sin

(
ωn

√
1 − ζ2t

)
• ys(t) = 1 − e−σt

(
cos(ωdt) + σ

ωd
sin(ωdt)

)
= 1 − e−σtωn

ωd
cos(ωdt− ϕ)

– ϕ = tan−1
(ωd

σ

)
= tan−1

(
ωd

ζωn

)
• DC gain: 1 (no scaling)
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Figure 4: Response based on pole location.

• Peak time: tp = nπ

ωn

√
1 − ζ2

= nπ

ωd

• Overshoot: Mp = e
− πζ√

1−ζ2 ⇐⇒ ζ =

√
(lnMp)2

π2 + (lnMp)2

– ζ = 0.5 gives 16% overshoot, ζ = 0.7 gives 5% overshoot
• Rise time: tr ≈ 1.8

ωn
(for ζ = 0.5)

• Settling time: ts ≈ 4.6
ζωn

= 4.6
σ

General Trends

• LHP zero: faster response; shorter rise time, larger overshoot; no effect on steady-state
• RHP zero (nonminimum-phase): longer rise time, less overshoot than LHP zero (but still increased);

can cause system to start in the wrong direction
• Additional poles: slower system; longer rise time, less overshoot
• Poles and zeros with a real part more than 4 times further can be ignored
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Block Diagram Simplification

Figure 5: Block diagram reduction rules.
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Control System Performance

Figure 6: Closed-loop controller with disturbances.

• Ycl = T R(s) +GSW (s) −HT V (s) =⇒ Ecl = R− Ycl = (1 − T )R−GSW +HT V

– T (s) = Y (s)
R(s) = G(s)Dcl(s)

1 +H(s)G(s)Dcl(s)
= Tcl(s) (assume W (s) = V (s) = 0)

– Y (s)
W (s) = G(s) · 1

1 +H(s)G(s)Dcl(s)
= G(s)S(s) (assume R(s) = V (s) = 0)

– Y (s)
V (s) = −H(s) · Dcl(s)G(s)

1 +H(s)Dcl(s)G(s) = −H(s)T (s) (assume R(s) = W (s) = 0)

– For unity feedback: T (s) + S(s) = 1 =⇒ Ecl = SR(s) −GSW (s) + T V (s)
• Sensitivity: ST G = G

T
dT
dG = 1

1 +HGDcl

• Type: the maximum order k of a polynomial reference r(t) = tk that the system can follow with ess

being constant
– For tracking and H(s) = 1,W (s) = V (s) = 0, the type is the number of poles GDcl(s) has at s = 0

– For regulation and R(s) = V (s) = 0, the type is the number of zeros Ecl(s)
W (s) = −Tw(s) =

− G(s)
1 +H(s)G(s)Dcl(s)

has at s = 0

• Error constants (wrt tracking):
– Type 0: Kp = lim

s→0
GDcl(s) =⇒ ess = 1

1 +Kp

– Type 1: Kv = lim
s→0

sGDcl(s) =⇒ ess = 1
Kv

– Type 2: Ka = lim
s→0

s2GDcl(s) =⇒ ess = 1
Ka
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Root Locus Design Method

• Evans form: 1 +Dc(s)G(s)H(s) = a(s) +Kb(s) = 0 =⇒ 1 +K
b(s)
a(s) = 1 +KL(s) = 0

• s0 is on the locus if
m∑

i=1
∠(s0 − zi) −

n∑
i=1

∠(s0 − pi) = 180° + 360°(l − 1)

• Given L(s) = b(s)
a(s) =

∏n
i=1(s− zi)∏m
i=1(s− pi)

, a positive root locus follows the following rules:

1. There are n branches each starting from the open-loop poles; m of these branches will end at the
open-loop zeros of L(s), while the rest go to infinity

2. The segments of the locus on the real axis are always to the left of an odd number of real poles
and zeros (on the real axis)

3. For the n−m poles that must go to infinity, their asymptotes are lines radiating from the real
axis at s = α at angles ϕl, where:

– α =
∑

i pi −
∑

i zi

n−m

– ϕl = 180° + 360°(l − 1)
n−m

– l = 1, 2, . . . ,n−m is the branch number
– Geometrically this means that the asymptotes evenly divide the 360° and are always symmetric

about the real axis; for an odd number of branches, there is always an asymptote towards the
negative real axis

4. Each branch departs at an angle of ϕl,d =
∑

i

ψi −
∑
i ̸=l

ϕi − 180° from an open-loop pole, where ψi

are the angles from zeros to the pole, and ϕi are angles from the other poles to the pole
– If the pole is repeated q times, ϕl,d =

∑
i

ψi −
∑
i ̸=l

ϕi − 180° − 360°(l − 1) for l = 1, 2, . . . , q

– Angles of arrival at a zero are ψl,a =
∑

ϕi −
∑
i̸=l

ψ + 180° + 360°(l − 1)

5. At points where branches intersect (where the characteristic polynomial has repeated roots), if q

branches intersect at the point, then their departure angles are 180° + 360°(l − 1)
q

plus an offset;
together the q branches arriving and q branches departing should form an array of 2q evenly spaced
rays

– If the intersection is on the real axis, use Rule 2 to determine the orientation, otherwise use
Rule 4

6. The breakaway/break-in points of the locus (i.e. intersection points) are among points where
dL(s)

ds = 0

– If the multiplicity of the root of dL(s)
ds = 0 is r, then the multiplicity of the corresponding

root in the closed-loop characteristic equation is q = r + 1 (i.e. r + 1 branches meet)

• After desired point s0 is found, K = 1
|L(s)| =

|
∏n

i=1(s0 − pi)|
|
∏m

i=1(s0 − zi)|
=

∏n
i=1|s0 − pi|∏m
i=1|s0 − zi|

– Substitute K back into L(s) = 1
K

to solve for the other roots at this gain
• Lead, lag and notch compensators do not have poles or zeros at the origin, thus they do not change the

system type
• Lead compensator: Dc(s) = K

s+ z

s+ p
where z < p; approximates PD control: speeds up response

(lowering rise time) and decreases overshoot
1. Determine where closed-loop poles need to be to meet specifications
2. Create a root locus with only a proportional controller
3. If more damping is needed, choose z to be 1/4 to 1 times the desired ωn and pick p to be 5 to 25

times z
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4. If less damping is needed, decrease p; if more damping is needed, increase p and/or decrease z
– The ratio p/z should be as low as possible (less than 25) in order to minimize the effects of

noise from a derivative controller
5. When values of z and p are found so that the root locus passes through the desired region, select

the value of K and check the step response
6. Add integral control or lag compensator if steady-state error requirements are not met

• Notch compensator: Dc(s) = K
s2 + 2ζω0s+ ω2

0
(s+ ω0)2 ; captures problematic poles with its zeros, cancelling

a specific unwanted resonant frequency in the plant
– Choose the zeros close to the undesirable pole and a bit closer to the imaginary axis
– Imaginary part of zeros is either above or below the poles, so the locus stays in the LHP

• Lag compensator: Dc(s) = K
s+ z

s+ p
where z > p; approximates PI control, decreasing steady-state error

1. Determine the factor of increase in the error constant needed, which gives z/p (typically between
3 to 10)

2. Select z to be approximately 100 to 200 times smaller than the system’s dominant natural frequency
3. Plot the resulting root locus and adjust z and p as necessary
4. Plot the step input to verify that the time domain response is still satisfactory

– If the lag compensator is too slow, increase z and p while keeping their ratio constant, but
keep still far from dominant poles
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Frequency Design Method
• Bandwidth ωBW : the highest frequency where the output still tracks the input in a satisfactory manner,

typically when gain hits
√

2/2 = 0.707
– A higher bandwidth means a faster response – the larger ωBW is, the larger ωn is and the shorter

our rise and peak times
• Resonant peak Mr: the maximum value of the amplitude ratio

– Mr = 1
2ζ

√
1 − ζ2

,ωr = ωn

√
1 − 2ζ2 for a second-order system

• Gain margin (GM): the factor by which K can be increased before the system becomes unstable;
GM < 1 indicates instability

– This is the value of 1
|KG(jω)| where ∠G(jω) = −180°

• Phase margin (PM): the amount by which ∠G(jω) exceeds −180° (less negative) when |KG(jω)| = 1;
PM < 0 indicates instability

– A value of PM = 30° is typically regarded as the lowest value for a safe stability margin

– PM = tan−1

 2ζ√√
1 + 4ζ4 − 2ζ2

 for a second-order system

– ζ ≈ PM°
100 for PM < 65°

• Crossover frequency ωc: the frequency at which the open-loop magnitude is unity
– PM = ∠L(jωc) − (−180°)
– ωc ≤ ωBW ≤ 2ωc with ωc = ωBW for PM = 90°

• Disturbance rejection bandwidth ωDRB : the max frequency at which the disturbance rejection (i.e. sen-
sitivity S) is below a certain amount, usually -3 decibels/0.707

Figure 7: Relationship between ζ and PM.

• Rule of thumb: having |KG(jω)| at a constant slope of -1 for a decade around ωc will result in a PM of
90°

• A unity feedback system of type n has an open-loop magnitude plot with a slope of −n at low frequencies
– |KDcG(jω)| ≈ Kn

ωn
at low frequencies

• Lead compensator: Dc(s) = TDs+ 1
αTDs+ 1 where α < 1, with corner frequencies ωl = 1

TD
(low) and

ωh = 1
αTD

(high); increases the crossover frequency and the speed of response
1. Determine K to satisfy error or bandwidth requirements

– For error, pick K to satisfy the error constant
– For bandwidth, pick K so that ωc is within a factor of two below the desired closed-loop

bandwidth
2. Evaluate the PM of the uncompensated system using this K
3. Find the amount of PM increase we need (add a safety margin, usually 5° or more)
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Figure 8: Relationship between Mp and Mr and PM.

4. Determine α = 1 − sinϕmax

1 + sinϕmax

5. Pick the desired crossover frequency and make ωmax there, and determine TD using 1
TD

= ωmax

√
α

6. Draw the compensated frequency response and check that the PM requirement is satisfied; iterate
if not

• Lag compensator: Dc(s) = α
TIs+ 1
αTIs+ 1 , where α > 1; decreases steady-state error; alternatively can be

used to decrease the magnitude at frequencies above break points (with adjustment in K), to increase
PM

1. Determine the gain K required to get the desired PM without compensation, with a 5° to 10°
margin to account for the PM reduction of the compensator

2. Draw the Bode plot of the uncompensated open-loop TF and check the low-frequency gain, which
gives the steady-state error

3. Determine the value of α to meet the steady-state error requirement – α is how much more we
need to multiply the low-frequency gain by in order to meet the steady-state error requirement

4. Choose the upper corner frequency 1
TI

(the zero) to be one octave to multiple decades below the
uncompensated ωc

5. Iterate on the design and verify that it meets requirements
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