Lecture 9, Feb 5, 2024

First-Order System Response

t
1
o Consider a pure integrator: y(t) = / u(t) dt 4+ y(0) which has transfer function H(s) = - if y(0) =0
0 S

— The ODE is y(t) = u(t)
1
— The impulse response is y;(t) = L7 {H(s)} = L' {s} =1

1 1
— The step response is y,(t) = £L7* {H(s)s} =L {32} =
— What if the initial condition is not zero? 1 1
* Laplace transform the ODE to get sY (s) —y(0) =U(s) = Y(s) = ;U(s) + ;y(O)
1 1
* For a step response, y,(t) = L1 {52} + L7t {Sy(O)} =t+y(0)1(¢t) =t +y(0)

o Consider an RC circuit with input voltage Ku(t)
— Form the ODE: Ty(t) + y(t) = Ku(t) where T = RC

— Laplace transform: TsY (s) + Y(s) = KU(s) = H(s) = =y =
1S
T

.
T

Impulse response: y;(t) = L7 {H(s)} =
K 1 T ¢
— Step response: y,(t) = L1 {()} =KLt { - } =K (1 - e’T>

s(T's+1 s Ts+1
— We can see that T is the time constant of the system; the smaller it is, the faster the system evolves

K
— DC gain: yss = tlggloys( ) = hm sm =K

o In general a first-order system has transfer function H(s) =

and impulse response h(t) = be”“'1(t)
a

— For positive a, this is stable and the system decays to 0; for negative a, this is unstable; for a = 0
the system maintains a constant output
* Positive a gives poles in the LHP and negative a gives poles in the RHP

b
— The step response is given by y, = —(1 — e~ *)1(#)
a
b
* For positive a, this converges to the DC gain —
* For negative a this diverges exponentially

b
* For zero a this gives a linear response (note we can derive this by nothing H(s) = — in this
S

case)
1
e The time constant is given by T = —
a
— The rise time is given by ¢, &~ 2.2T', which is the time taken for the output to go from 10% to 90%

of the DC gain
4.6
— The settling time is given by t; & —, which is the time taken for the output to reach 99% of the
a
DC gain
e In a first-order system, there is never any overshoot or oscillation; the output never passes the steady
state value

Second Order System Response

o Consider a spring-mass-dashpot system: mgj(t) + by(t) + ky(t) = kf(t)
— Laplace transform: m(s?Y (s) — sy(0~ ) —y(07)) +b(sY(s) —y(07)) + kY (s) = kF(s)

Y(s) m pe oL o)
— S) = —F"+— S _— _—
s+ Ls £ sz—i—%s-i-f +ms+£y



> Impulse Response: h(t) = L7'H(s)] = be™™ 1(t)
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> Step Response:  Ysiep(t) = LTY[H(s)/s] = g(l—e_"'t)l(t)

Step Response Step Response Step Response
/’/‘
> &
] =
Soa>0 a=0 a<0
3 7 8 8 4
= / = E| Ve
a ) a a A
£ |/ £ H —
/ .
{ N 7 ...
/

0 - 4 6 0 2 4 6 0 05 1 15 2 25

Figure 1: Behaviour of the impulse and step responses for a general (strictly proper) first-order system.

Y(s) £ w2
~ Assumi tate, H(s) = = m = n
ssuming zero state, H(s) F(s) 21 bst 24 Rwns T o
[k
* wp = 1/ — is the natural frequency
m
b
* (= is the damping ratio
¢ Wi ping

— The poles are at —Cw,, + w,\/¢2 —1
* Depending on ¢ we can get real or imaginary poles
- If ¢ > 1 (i.e. b > 2V km) we have two distinct real poles; the system is overdamped

* Let —o1 = —(uwn +wn\/<ﬁv —02 = —(Wn — Wn 'V -1

0'1—|—O'2

* Then wy, = /0102, = 2 oo
— If { =1 (i.e. b= 2Vkm) we have two overlapping real poles; the system is critically damped
2
* H(s)=

o
m where o0 = Wn
- If0< (<1 (ie. b<2Vkm) we have two complex conjugate poles; the system is underdamped

* The poles are s1, 83 = —0 £ jwg where 0 = Wy, wqg = wp\/1 — (2

% wfl 0%+ wg

H(S) - - - = 5 3

(s = (=0 + jwaq))(s — (=0 —jwa)) (s +0)* +wj
* In this case the system oscillates
* wy is the oscillation frequency and o is the decay rate

e Consider the impulse response of the underdamped case
2 2 2 2 2 2
~yi(t)y=L"" o7 tw) +2wd) s =L" (0" +wy) wz 5 (= 7"t Y e 7" sin(wgt)
(s+0)2+wj] wg  (s+0)?24w; wa
— Alternatively y;(t) = \/:}7”7@6_@““ sin (wn\/ 1- C2t)

— The response is a decaying exponential
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Figure 2: Ilustration of the system variables in polar form.
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Figure 3: Response of an underdamped second-order system based on pole location.
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Figure 4: Impulse response of an underdamped second-order system.
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