Lecture 9, Feb 5, 2024

First-Order System Response

- Consider a pure integrator: $y(t) = \int_0^t u(t) dt + y(0)$ which has transfer function $H(s) = \frac{1}{s}$ if y(0) = 0- The ODE is $\dot{y}(t) = u(t)$
 - The impulse response is $y_i(t) = \mathcal{L}^{-1} \{H(s)\} = \mathcal{L}^{-1} \left\{\frac{1}{s}\right\} = 1$
 - The step response is $y_s(t) = \mathcal{L}^{-1}\left\{H(s)\frac{1}{s}\right\} = \mathcal{L}^{-1}\left\{\frac{1}{s^2}\right\} = t$ What if the initial condition is not zero?
 - - * Laplace transform the ODE to get $sY(s) y(0) = U(s) \implies Y(s) = \frac{1}{s}U(s) + \frac{1}{s}y(0)$
- * For a step response, $y_s(t) = \mathcal{L}^{-1}\left\{\frac{1}{s^2}\right\} + \mathcal{L}^{-1}\left\{\frac{1}{s}y(0)\right\} = t + y(0)\mathbf{1}(t) = t + y(0)$ • Consider an RC circuit with input voltage K_{i}
 - Form the ODE: $T\dot{y}(t) + y(t) = Ku(t)$ where T = RC
 - Laplace transform: $TsY(s) + Y(s) = KU(s) \implies H(s) = \frac{Y(s)}{U(s)} = \frac{K}{Ts+1}$
 - Impulse response: $y_i(t) = \mathcal{L}^{-1} \{H(s)\} = \frac{K}{T} e^{-\frac{t}{T}}$
 - Step response: $y_s(t) = \mathcal{L}^{-1}\left\{\frac{K}{s(Ts+1)}\right\} = K\mathcal{L}^{-1}\left\{\frac{1}{s} \frac{T}{Ts+1}\right\} = K\left(1 e^{-\frac{t}{T}}\right)$ We can see that T is the time constant of the system; the smaller it is, the faster the system evolves

 - DC gain: $y_s s = \lim_{t \to \infty} y_s(t) = \lim_{s \to 0} s \frac{K}{s(Ts+1)} = K$

• In general a first-order system has transfer function $H(s) = \frac{b}{s+a}$ and impulse response $h(t) = be^{-at}1(t)$

- For positive a, this is stable and the system decays to 0; for negative a, this is unstable; for a = 0the system maintains a constant output
 - * Positive a gives poles in the LHP and negative a gives poles in the RHP
- The step response is given by $y_s = \frac{b}{a}(1-e^{-at})\mathbf{1}(t)$
 - * For positive a, this converges to the DC gain $\frac{b}{a}$
 - * For negative a this diverges exponentially
 - * For zero *a* this gives a linear response (note we can derive this by nothing $H(s) = \frac{b}{s}$ in this case)
- The time constant is given by $T = \frac{1}{a}$ The rise time is given by $t_r \approx 2.2T$, which is the time taken for the output to go from 10% to 90% of the DC gain
 - The settling time is given by $t_s \approx \frac{4.6}{a}$, which is the time taken for the output to reach 99% of the DC gain
- In a first-order system, there is never any overshoot or oscillation; the output never passes the steady state value

Second Order System Response

- Consider a spring-mass-dashpot system: $m\ddot{y}(t) + b\dot{y}(t) + ky(t) = kf(t)$ Laplace transform: $m(s^2Y(s) sy(0^-) \dot{y}(0^-)) + b(sY(s) y(0^-)) + kY(s) = kF(s)$ $Y(s) = \frac{\frac{k}{m}}{s^2 + \frac{b}{m}s + \frac{k}{m}}F(s) + \frac{s + \frac{b}{m}}{s^2 + \frac{b}{m}s + \frac{k}{m}}y(0^-) + \frac{1}{s^2 + \frac{b}{m}s + \frac{k}{m}}\dot{y}(0^-)$

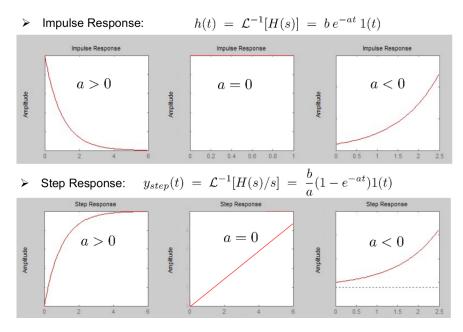


Figure 1: Behaviour of the impulse and step responses for a general (strictly proper) first-order system.

- Assuming zero state,
$$H(s) = \frac{Y(s)}{F(s)} = \frac{k}{s^2 + \frac{b}{m}s + \frac{k}{m}} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

* $\omega_n = \sqrt{\frac{k}{m}}$ is the natural frequency
* $\zeta = \frac{b}{2\sqrt{km}}$ is the damping ratio
- The poles are at $-\zeta\omega_n \pm \omega_n\sqrt{\zeta^2 - 1}$
* Depending on ζ we can get real or imaginary poles
- If $\zeta > 1$ (i.e. $b > 2\sqrt{km}$) we have two distinct real poles; the system is overdamped
* Let $-\sigma_1 = -\zeta\omega_n + \omega_n\sqrt{\zeta^2 - 1}, -\sigma_2 = -\zeta\omega_n - \omega_n\sqrt{\zeta^2 - 1}$
* Then $\omega_n = \sqrt{\sigma_1\sigma_2}, \zeta = \frac{\sigma_1 + \sigma_2}{2\sqrt{\sigma_1\sigma_2}}$
- If $\zeta = 1$ (i.e. $b = 2\sqrt{km}$) we have two overlapping real poles; the system is critically damped
* $H(s) = \frac{\sigma^2}{(s + \sigma)^2}$ where $\sigma = \omega_n$
- If $0 \le \zeta < 1$ (i.e. $b < 2\sqrt{km}$) we have two complex conjugate poles; the system is underdamped
* The poles are $s_1, s_2 = -\sigma \pm j\omega_d$ where $\sigma = \zeta\omega_n, \omega_d = \omega_n\sqrt{1 - \zeta^2}$
* $H(s) = \frac{\omega_n^2}{(s - (-\sigma + j\omega_d))(s - (-\sigma - j\omega_d))} = \frac{\sigma^2 + \omega_d^2}{(s + \sigma)^2 + \omega_d^2}$
* In this case the system oscillates
* ω_d is the oscillation frequency and σ is the decay rate
• Consider the impulse response of the underdamped case
 $-y_i(t) = \mathcal{L}^{-1} \left\{ \frac{(\sigma^2 + \omega_d^2)}{(s + \sigma)^2 + \omega_d^2} \right\} = \mathcal{L}^{-1} \left\{ \frac{(\sigma^2 + \omega_d^2)}{\omega_d} \frac{\omega_d}{(s + \sigma)^2 + \omega_d^2} \right\} = \frac{\sigma^2 + \omega_d^2}{\omega_d} e^{-\sigma t} \sin(\omega_d t)$
 $- Alternatively $y_i(t) = \frac{\omega_n}{\sqrt{1 - \zeta^2}} e^{-\zeta\omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2 t})$$

- Alternatively $y_i(t) = \frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta u + t} \sin \theta$ - The response is a decaying exponential

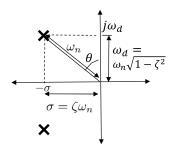


Figure 2: Illustration of the system variables in polar form.

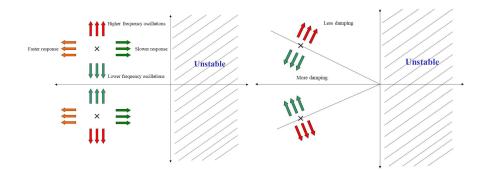


Figure 3: Response of an underdamped second-order system based on pole location.

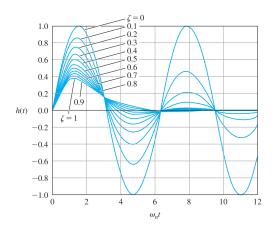


Figure 4: Impulse response of an underdamped second-order system.