
Lecture 9, Feb 5, 2024
First-Order System Response

• Consider a pure integrator: y(t) =
� t

0
u(t) dt + y(0) which has transfer function H(s) = 1

s
if y(0) = 0

– The ODE is ẏ(t) = u(t)

– The impulse response is yi(t) = L−1 {H(s)} = L−1
{

1
s

}
= 1

– The step response is ys(t) = L−1
{

H(s)1
s

}
= L−1

{
1
s2

}
= t

– What if the initial condition is not zero?
* Laplace transform the ODE to get sY (s) − y(0) = U(s) =⇒ Y (s) = 1

s
U(s) + 1

s
y(0)

* For a step response, ys(t) = L−1
{

1
s2

}
+ L−1

{
1
s

y(0)
}

= t + y(0)1(t) = t + y(0)

• Consider an RC circuit with input voltage Ku(t)
– Form the ODE: T ẏ(t) + y(t) = Ku(t) where T = RC

– Laplace transform: TsY (s) + Y (s) = KU(s) =⇒ H(s) = Y (s)
U(s) = K

Ts + 1
– Impulse response: yi(t) = L−1 {H(s)} = K

T
e− t

T

– Step response: ys(t) = L−1
{

K

s(Ts + 1)

}
= KL−1

{
1
s

− T

Ts + 1

}
= K

(
1 − e− t

T

)
– We can see that T is the time constant of the system; the smaller it is, the faster the system evolves
– DC gain: yss = lim

t→∞
ys(t) = lim

s→0
s

K

s(Ts + 1) = K

• In general a first-order system has transfer function H(s) = b

s + a
and impulse response h(t) = be−at1(t)

– For positive a, this is stable and the system decays to 0; for negative a, this is unstable; for a = 0
the system maintains a constant output

* Positive a gives poles in the LHP and negative a gives poles in the RHP
– The step response is given by ys = b

a
(1 − e−at)1(t)

* For positive a, this converges to the DC gain b

a
* For negative a this diverges exponentially
* For zero a this gives a linear response (note we can derive this by nothing H(s) = b

s
in this

case)
• The time constant is given by T = 1

a
– The rise time is given by tr ≈ 2.2T , which is the time taken for the output to go from 10% to 90%

of the DC gain
– The settling time is given by ts ≈ 4.6

a
, which is the time taken for the output to reach 99% of the

DC gain
• In a first-order system, there is never any overshoot or oscillation; the output never passes the steady

state value

Second Order System Response
• Consider a spring-mass-dashpot system: mÿ(t) + bẏ(t) + ky(t) = kf(t)

– Laplace transform: m(s2Y (s) − sy(0−) − ẏ(0−)) + b(sY (s) − y(0−)) + kY (s) = kF (s)

– Y (s) =
k
m

s2 + b
m s + k

m

F (s) +
s + b

m

s2 + b
m s + k

m

y(0−) + 1
s2 + b

m s + k
m

ẏ(0−)
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Figure 1: Behaviour of the impulse and step responses for a general (strictly proper) first-order system.

– Assuming zero state, H(s) = Y (s)
F (s) =

k
m

s2 + b
m s + k

m

= ω2
n

s2 + 2ζωns + ω2
n

* ωn =
√

k

m
is the natural frequency

* ζ = b

2
√

km
is the damping ratio

– The poles are at −ζωn ± ωn

√
ζ2 − 1

* Depending on ζ we can get real or imaginary poles
– If ζ > 1 (i.e. b > 2

√
km) we have two distinct real poles; the system is overdamped

* Let −σ1 = −ζωn + ωn

√
ζ2 − 1, −σ2 = −ζωn − ωn

√
ζ2 − 1

* Then ωn =
√

σ1σ2, ζ = σ1 + σ2

2√
σ1σ2

– If ζ = 1 (i.e. b = 2
√

km) we have two overlapping real poles; the system is critically damped

* H(s) = σ2

(s + σ)2 where σ = ωn

– If 0 ≤ ζ < 1 (i.e. b < 2
√

km) we have two complex conjugate poles; the system is underdamped
* The poles are s1, s2 = −σ ± jωd where σ = ζωn, ωd = ωn

√
1 − ζ2

* H(s) = ω2
n

(s − (−σ + jωd))(s − (−σ − jωd)) = σ2 + ω2
d

(s + σ)2 + ω2
d

* In this case the system oscillates
* ωd is the oscillation frequency and σ is the decay rate

• Consider the impulse response of the underdamped case

– yi(t) = L−1
{

(σ2 + ω2
d)

(s + σ)2 + ω2
d

}
= L−1

{
(σ2 + ω2

d)
ωd

ωd

(s + σ)2 + ω2
d

}
= σ2 + ω2

d

ωd
e−σt sin(ωdt)

– Alternatively yi(t) = ωn√
1 − ζ2

e−ζωnt sin
(

ωn

√
1 − ζ2t

)
– The response is a decaying exponential
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Figure 2: Illustration of the system variables in polar form.

Figure 3: Response of an underdamped second-order system based on pole location.

Figure 4: Impulse response of an underdamped second-order system.
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