Lecture 7, Jan 29, 2024

Laplace Transform

Definition

The Laplace transform for a generic function f(t) is defined as

$$F(s) \equiv \int_{-\infty}^{\infty} f(t)e^{-s} \,\mathrm{d}t$$

The unilateral (one-sided) Laplace transform is defined as

$$F(s) = \mathcal{L} \{ f(t) \} \equiv \int_{0^{-}}^{\infty} f(t) e^{-st} \, \mathrm{d}t$$

where $s = \sigma + j\omega$ is a complex frequency variable with units of inverse time.

- The Laplace transform transforms linear ODEs into algebraic equations
- For our purposes since we only consider $t \ge 0$, we consider all functions to be 0 for t < 0 and so the unilateral transform suffices
- F(s) exists (i.e. the integral converges) if for all $\operatorname{Re}(s) > \alpha$ we have $|f(t)| < Me^{\alpha t}$ for all $s \in \mathbb{C}, M \in \mathbb{R}$, i.e. f(t) grows slower than exponential
 - When multiplying transforms, the output is only valid for values of s in the intersection of the regions of convergence
- Some examples:

- Unit step:
$$\mathcal{L}\left\{1(t)\right\} = \int_0^\infty 1(t)e^{-st} dt = -\frac{1}{s} \left[e^{-st}\right]_0^\infty = \frac{1}{s}$$

- Unit impulse: $\mathcal{L}\left\{\delta(t)\right\} = \int_0^\infty \delta(t)e^{-st} dt = e^{-st}$ = 1

* Note that we had to start at
$$0^-$$
 to include 0 in the integration region

- Exponential:
$$\mathcal{L}\left\{e^{\alpha t}\right\} = \int_0^\infty e^{\alpha t} e^{-st} dt = \int_0^\infty e^{-(s-a)t} dt = -\frac{1}{s-a} \left[e^{-(s-a)t}\right]_0^\infty = \frac{1}{s-a}$$

* Note we need to assume
$$\operatorname{Re}(s) > \operatorname{Re}(a)$$
 so that the exponent has a negative real part
- Sinusoid: $\mathcal{L}\left\{\cos(\omega t)\right\} = \int_{-\infty}^{\infty} \cos(\omega t)e^{-st} dt$

$$= \int_0^\infty \frac{e^{j\omega t} + e^{-j\omega t}}{2} e^{-st} dt$$

$$= -\frac{1}{2(s-j\omega)} \left[e^{-(s-j\omega)t} \right]_0^\infty - \frac{1}{2(s+j\omega)} \left[e^{-(s+j\omega)t} \right]_0^\infty$$

$$= \frac{1}{2(s-j\omega)} + \frac{1}{2(s+j\omega)}$$

$$= \frac{s}{s^2 + \omega^2}$$

* Similarly we can show
$$\mathcal{L}\left\{\sin(\omega t)\right\} = \frac{\omega}{s^2 + \omega^2}$$

- Power of t : $\int_0^\infty t^n e^{-st} dt = \left[-\frac{t^n}{s}e^{-st}\right]_0^\infty + \int_0^\infty nt^{n-1}\frac{e^{-st}}{s} dt$
 $= \frac{n}{s}\int_0^\infty t^{n-1}e^{-st} dt$
 $= \frac{n}{s}\mathcal{L}\left\{t^{n-1}\right\}$
 $= \frac{n!}{s^{n+1}}$

* Therefore the unit ramp function has $\mathcal{L}\left\{t\right\} = \frac{1}{s^2}$ • Important properties:

- Linearity/superposition: $\mathcal{L} \{ \alpha_1 f_1(t) + \alpha_2 f_2(t) \} = \alpha_1 F_1(s) + \alpha_2 F_2(s)$

- Time delay:
$$\mathcal{L} \{ f(t-\tau) \mathbb{1}(t-\tau) \} = \int_0^\infty f(t-\tau) \mathbb{1}(t-\tau) e^{-st} dt$$

$$= \int_\tau^\infty f(t-\tau) e^{-st} dt$$

$$= \int_0^\infty f(\lambda) e^{-s(\tau+\lambda)} d\lambda$$

$$= e^{-\tau s} \int_0^\infty f(\lambda) e^{-s\lambda} d\lambda$$

$$= e^{-\tau s} F(s)$$

* A delay in time domain is a multiplication by an exponential in Laplace domain - Differentiation: $\mathcal{L}\left\{\frac{\mathrm{d}}{\mathrm{d}t}f(t)\right\} = \int_0^\infty e^{-st}\dot{f}(t)\,\mathrm{d}t$

$$= \left[f(t)e^{-st}\right]_0^\infty + s \int_0^\infty f(t)e^{-st} dt$$
$$= sF(s) - f(0)$$

- * Note the f(0) term vanishes for a zero-state response * For higher derivatives: $\mathcal{L}\left\{\frac{\mathrm{d}^2}{\mathrm{d}t^2}f(t)\right\} = s(sF(s) f(0)) \dot{f}(0) = s^2F(s) sf(0) \dot{f}(0)$

* Going backwards:
$$\mathcal{L} \{tf(t)\} = -\frac{d}{ds}F(s)$$

- Integration: $\mathcal{L} \left\{ \int_0^t f(\tau) d\tau \right\} = \int_0^\infty \int_0^t f(\tau) d\tau e^{-st} dt$
 $= -\frac{1}{s} \left[\int_0^t f(\tau) d\tau e^{-st} \right]_0^\infty + \frac{1}{s} \int_0^\infty f(t)e^{-st} dt$
 $= \frac{1}{s}F(s)$
- Convolution: $\mathcal{L} \{f(t) * h(t)\} = \int_0^\infty \int_0^t f(t-\tau)h(\tau) d\tau e^{-st} dt$
 $= \int_0^\infty \int_0^t f(t-\tau)h(t)e^{-st} d\tau dt$
 $= \int_0^\infty \int_\tau^\infty f(t-\tau)h(\tau)e^{-st} dt d\tau$
 $= \int_0^\infty \int_0^\infty f(\lambda)h(\tau)e^{-s(\lambda+\tau)} d\lambda d\tau$
 $= \int_0^\infty f(\lambda)e^{-s\lambda} d\lambda \int_0^\infty h(\tau)e^{-s\tau} d\tau$
 $= F(s)H(s)$

* This means we can multiply the Laplace transform of the input by the Laplace transform of the impulse response to get the Laplace transform of the output $\frac{1}{1}$

* Note
$$\mathcal{L}\left\{f(t)h(t)\right\} = \frac{1}{2\pi j}(F(s) * H(s))$$

- Final Value Theorem: $\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$
* Recall that $\mathcal{L}\left\{\frac{\mathrm{d}}{\mathrm{d}t}f\right\} = sF(s) - f(0)$
* $\lim_{s \to \infty} (sF(s) - f(0)) = \lim_{s \to 0} sF(s) - f(0) = \lim_{s \to 0} \int_0^\infty e^{-st} \frac{\mathrm{d}f}{\mathrm{d}t} \,\mathrm{d}t = \int_0^\infty \frac{\mathrm{d}f}{\mathrm{d}t} \,\mathrm{d}t = \lim_{t \to \infty} f(t) - f(0)$

- * Note this requires that f(t) and $\frac{\mathrm{d}f}{\mathrm{d}t}$ have Laplace transforms, and $\lim_{t\to\infty} f(t)$ exists, i.e. it is stable
- Initial Value Theorem: $\lim_{t \to 0^+} f(t) = \lim_{s \to \infty} sF(s)$

Transfer Functions

Definition

Transfer Function: The ratio of the Laplace transforms of the output to the input of a system, assuming that the system was initially at equilibrium (zero state/initial conditions).

- All transfer functions assume zero-state; if we want to look at initial conditions we shouldn't use transfer functions
- Given any input u(t) to the system, the output of the system in time domain is y(t) = h(t) * u(t) where h(t) is the impulse response
- In Laplace domain, the output is Y(s) = H(s)U(s) where $H(s) = \frac{Y(s)}{U(s)}$, the Laplace transform of the impulse response, is the transfer function
- For all LTI systems, the transfer function of the system fully characterizes the system dynamics
- Most transfer functions are rational functions $H(s) = K_H \frac{n_H(s)}{d_H(s)} = K_h \frac{s^m + b_1 s^{m-1} + \dots + b_m}{s^n + a_1 s^{n-1} + \dots + a_n}$
 - *Poles* are the roots of $d_H(s)$
 - * These are more important than the zeros
 - Zeros are the roots of $n_H(s)$
 - Poles are denoted with an X while zeros are denoted by O on the complex plane when plotting
 - K_H is the transfer function gain
 - $-d_H(s)$ is the characteristic equation of the transfer function/system
 - * The system's *order* is the degree of $d_H(s)$
- For all causal systems, the *relative degree* n m of the transfer function is always greater than or equal to zero
 - Consider H(s) = s; then for an input U(s), we get output Y(s) = sU(s), which means $y(t) = \frac{d}{dt}u(t)$
 - * Such a system cannot be causal, because in order to determine the derivative of the input, the system needs to somehow anticipate the input's behaviour in the future
 - * e.g. if we put in a sinusoid, it will be shifted to the left, which is non-causal
 - * Generally, zeros tend to push the system towards non-causality by moving the response earlier in time, while poles push the system towards causality by delaying the response
 - The transfer function is a proper ratio (if m < n, then it is strictly proper)
 - Most systems we will study have strictly proper transfer functions

•
$$H(s) = K_H \frac{\prod_{i=1}^m (s-z_i)}{\prod_{i=1}^n (s-p_i)} = \left(\frac{K_H \prod_{i=1}^m z_i}{\prod_{i=1}^n p_i}\right) \frac{\prod_{i=1}^m \left(\frac{s}{z_i} - 1\right)}{\prod_{i=1}^n \left(\frac{s}{p_i} - 1\right)}$$
 where z_i are the zeros, p_i the are poles

- For any LTI system, the poles of a system determines its behaviour
 - Note complex poles always come in conjugate pairs
 - Any poles on the right hand plane are unstable, i.e. the output will keep growing
 * Larger real values lead to faster growth
 - Any poles on the left hand plane are convergent, i.e. output eventually settles to 0
 - * More negative real values lead to faster decay
 - Poles with zero real part neither grow nor shrink in magnitude
 - Any imaginary component in the pole causes the output to oscillate
 - $\,\,*\,$ Larger imaginary component lead to higher oscillation frequency
- When there are multiple poles and zeros, they will interact with each other and lead to more interesting behaviour

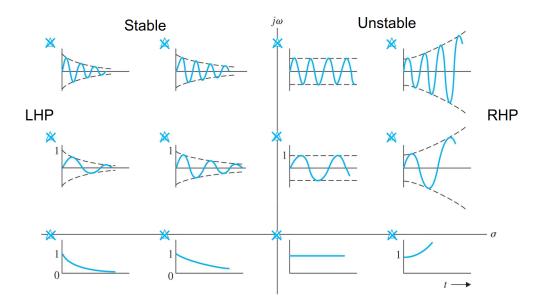


Figure 1: Behaviour of a system according to its poles.

- The DC gain (or static gain) is the steady-state response of the system to the unit step input
 - This will give an output $Y_s(s) = H(s)U(s) = \frac{1}{s}H(s)$
 - Using FVT, $\lim_{t \to \infty} y_s(t) = \lim_{s \to 0} s\left(\frac{1}{s}H(s)\right) = \lim_{s \to 0} H(s)$ This makes the DC gain very easy to find