
Lecture 7, Jan 29, 2024
Laplace Transform

Definition

The Laplace transform for a generic function f(t) is defined as

F (s) ≡
� ∞

−∞
f(t)e−s dt

The unilateral (one-sided) Laplace transform is defined as

F (s) = L {f(t)} ≡
� ∞

0−
f(t)e−st dt

where s = σ + jω is a complex frequency variable with units of inverse time.

• The Laplace transform transforms linear ODEs into algebraic equations
• For our purposes since we only consider t ≥ 0, we consider all functions to be 0 for t < 0 and so the

unilateral transform suffices
• F (s) exists (i.e. the integral converges) if for all Re(s) > α we have |f(t)| < Meαt for all s ∈ C, M ∈ R,

i.e. f(t) grows slower than exponential
– When multiplying transforms, the output is only valid for values of s in the intersection of the

regions of convergence
• Some examples:

– Unit step: L {1(t)} =
� ∞

0
1(t)e−st dt = −1

s

[
e−st

]∞
0 = 1

s

– Unit impulse: L {δ(t)} =
� ∞

0−
δ(t)e−st dt = e−st

∣∣
t=0 = 1

* Note that we had to start at 0− to include 0 in the integration region
– Exponential: L

{
eαt

}
=
� ∞

0
eαte−st dt =

� ∞

0
e−(s−a)t dt = − 1

s − a

[
e−(s−a)t

]∞

0
= 1

s − a
* Note we need to assume Re(s) > Re(a) so that the exponent has a negative real part

– Sinusoid: L {cos(ωt)} =
� ∞

0
cos(ωt)e−st dt

=
� ∞

0

ejωt + e−jωt

2 e−st dt

= − 1
2(s − jω)

[
e−(s−jω)t

]∞

0
− 1

2(s + jω)

[
e−(s+jω)t

]∞

0

= 1
2(s − jω) + 1

2(s + jω)
= s

s2 + ω2

* Similarly we can show L {sin(ωt)} = ω

s2 + ω2

– Power of t:
� ∞

0
tne−st dt =

[
− tn

s
e−st

]∞

0
+
� ∞

0
ntn−1 e−st

s
dt

= n

s

� ∞

0
tn−1e−st dt

= n

s
L

{
tn−1}

= n!
sn+1
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* Therefore the unit ramp function has L {t} = 1
s2

• Important properties:
– Linearity/superposition: L {α1f1(t) + α2f2(t)} = α1F1(s) + α2F2(s)
– Time delay: L {f(t − τ)1(t − τ)} =

� ∞

0
f(t − τ)1(t − τ)e−st dt

=
� ∞

τ

f(t − τ)e−st dt

=
� ∞

0
f(λ)e−s(τ+λ) dλ

= e−τs

� ∞

0
f(λ)e−sλ dλ

= e−τsF (s)
* A delay in time domain is a multiplication by an exponential in Laplace domain

– Differentiation: L
{

d
dt

f(t)
}

=
� ∞

0
e−stḟ(t) dt

=
[
f(t)e−st

]∞
0 + s

� ∞

0
f(t)e−st dt

= sF (s) − f(0)
* Note the f(0) term vanishes for a zero-state response

* For higher derivatives: L
{

d2

dt2 f(t)
}

= s(sF (s) − f(0)) − ḟ(0) = s2F (s) − sf(0) − ḟ(0)

* Going backwards: L {tf(t)} = − d
ds

F (s)

– Integration: L
{� t

0
f(τ) dτ

}
=
� ∞

0

� t

0
f(τ) dτe−st dt

= −1
s

[� t

0
f(τ) dτe−st

]∞

0
+ 1

s

� ∞

0
f(t)e−st dt

= 1
s

F (s)

– Convolution: L {f(t) ∗ h(t)} =
� ∞

0

� t

0
f(t − τ)h(τ) dτe−st dt

=
� ∞

0

� t

0
f(t − τ)h(t)e−st dτ dt

=
� ∞

0

� ∞

τ

f(t − τ)h(τ)e−st dt dτ

=
� ∞

0

� ∞

0
f(λ)h(τ)e−s(λ+τ) dλ dτ

=
� ∞

0
f(λ)e−sλ dλ

� ∞

0
h(τ)e−sτ dτ

= F (s)H(s)
* This means we can multiply the Laplace transform of the input by the Laplace transform of

the impulse response to get the Laplace transform of the output
* Note L {f(t)h(t)} = 1

2πj
(F (s) ∗ H(s))

– Final Value Theorem: lim
t→∞

f(t) = lim
s→0

sF (s)

* Recall that L
{

d
dt

f

}
= sF (s) − f(0)

* lim
s→∞

(sF (s) − f(0)) = lim
s→0

sF (s) − f(0) = lim
s→0

� ∞

0
e−st df

dt
dt =

� ∞

0

df

dt
dt = lim

t→∞
f(t) − f(0)
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* Note this requires that f(t) and df

dt
have Laplace transforms, and lim

t→∞
f(t) exists, i.e. it is

stable
– Initial Value Theorem: lim

t→0+
f(t) = lim

s→∞
sF (s)

Transfer Functions
Definition

Transfer Function: The ratio of the Laplace transforms of the output to the input of a system,
assuming that the system was initially at equilibrium (zero state/initial conditions).

• All transfer functions assume zero-state; if we want to look at initial conditions we shouldn’t use transfer
functions

• Given any input u(t) to the system, the output of the system in time domain is y(t) = h(t) ∗ u(t) where
h(t) is the impulse response

• In Laplace domain, the output is Y (s) = H(s)U(s) where H(s) = Y (s)
U(s) , the Laplace transform of the

impulse response, is the transfer function
• For all LTI systems, the transfer function of the system fully characterizes the system dynamics

• Most transfer functions are rational functions H(s) = KH
nH(s)
dH(s) = Kh

sm + b1sm−1 + · · · + bm

sn + a1sn−1 + · · · + an

– Poles are the roots of dH(s)
* These are more important than the zeros

– Zeros are the roots of nH(s)
– Poles are denoted with an X while zeros are denoted by O on the complex plane when plotting
– KH is the transfer function gain
– dH(s) is the characteristic equation of the transfer function/system

* The system’s order is the degree of dH(s)
• For all causal systems, the relative degree n − m of the transfer function is always greater than or equal

to zero
– Consider H(s) = s; then for an input U(s), we get output Y (s) = sU(s), which means y(t) = d

dt
u(t)

* Such a system cannot be causal, because in order to determine the derivative of the input, the
system needs to somehow anticipate the input’s behaviour in the future

* e.g. if we put in a sinusoid, it will be shifted to the left, which is non-causal
* Generally, zeros tend to push the system towards non-causality by moving the response earlier

in time, while poles push the system towards causality by delaying the response
– The transfer function is a proper ratio (if m < n, then it is strictly proper)
– Most systems we will study have strictly proper transfer functions

• H(s) = KH

∏m
i=1(s − zi)∏n
i=1(s − pi)

=
(

KH

∏m
i=1 zi∏n

i=1 pi

) ∏m
i=1

(
s
zi

− 1
)

∏n
i=1

(
s
pi

− 1
) where zi are the zeros, pi the are poles

• For any LTI system, the poles of a system determines its behaviour
– Note complex poles always come in conjugate pairs
– Any poles on the right hand plane are unstable, i.e. the output will keep growing

* Larger real values lead to faster growth
– Any poles on the left hand plane are convergent, i.e. output eventually settles to 0

* More negative real values lead to faster decay
– Poles with zero real part neither grow nor shrink in magnitude
– Any imaginary component in the pole causes the output to oscillate

* Larger imaginary component lead to higher oscillation frequency
• When there are multiple poles and zeros, they will interact with each other and lead to more interesting

behaviour
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Figure 1: Behaviour of a system according to its poles.

• The DC gain (or static gain) is the steady-state response of the system to the unit step input
– This will give an output Ys(s) = H(s)U(s) = 1

s
H(s)

– Using FVT, lim
t→∞

ys(t) = lim
s→0

s

(
1
s

H(s)
)

= lim
s→0

H(s)
– This makes the DC gain very easy to find
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