Lecture 7, Jan 29, 2024

Laplace Transform

The Laplace transform for a generic function f(¢) is defined as

F(s) = /_OO ft)e™*de

The unilateral (one-sided) Laplace transform is defined as

Fo) = £ {0y = [ rear

where s = 0 + jw is a complex frequency variable with units of inverse time.

e The Laplace transform transforms linear ODEs into algebraic equations
e For our purposes since we only consider ¢ > 0, we consider all functions to be 0 for ¢ < 0 and so the
unilateral transform suffices
o F(s) exists (i.e. the integral converges) if for all Re(s) > a we have |f(t)] < Me®* for all s € C, M € R,
i.e. f(t) grows slower than exponential
— When multiplying transforms, the output is only valid for values of s in the intersection of the
regions of convergence

e Some examples:
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— Unit step: £{1()} :/ L(t)e st dt = - e, ==
0
— Unit impulse: £{6(t)} = /0_ S(t)e stdt = 6_5t|t:0 =1

* Note that we had to start at 0~ to include 0 in the integration region
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— Exponential: £ {eat} = / ete st dt = / eIt g = — [e_(s_“)t} =
s—a 0 s—a

* Note we need to assume Re(s) > Re(a) so that the exponent has a negative real part
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— Sinusoid: £ {cos(wt)} :/ cos(wt)e™ " dt
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* Similarl how £ {sin(wt)} = ———
imilarly we can show £ {sin(wt)} o
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* Therefore the unit ramp function has £ {t} = —
s

Important properties:
— Linearity /superposition: £ {ayf1(t) + aafa(t)} = a1 F1(s) + aaFa(s)
o0

— Time delay: L{f(t—7)1(t —7)} = /0 Flt—7)1(t — T)e—st dt

= /Too flt—7)e stat

— / f()\)efs(‘rﬁ*)\) d\
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* A delay in time domain is a multlphcatlon by an exponential in Laplace domain

— Differentiation: £ {jtf(t)} z/ e Stf(t)dt
0

= [f(e=] + S/OOO Ft)est dt
_ 5F(s) -~ (0)

* Note the f(0) term vanishes for a zero-state response
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* For higher derivatives: £ {;2 (t)} = s(sF(s) — £(0)) = f(0) = s>F(s) — sf(0) — £(0)

* Going backwards: L{tf(t)} = —iF( )

— Integration: L{/ f(r dr} / / f(r)dre st dt
=3 [/0 f(r)ydre™® ] / f(t)e st dt
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— Convolution: £ {f(¢t)*h(t)}
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= h /t f(t —7)h(t)e " drdt
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= / f(t —7)h(T)e st dtdr
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* This means we can multlply the Laplace transform of the input by the Laplace transform of
the impulse response to get the Laplace transform of the output

* Note £{f(Hh(0)} = 5=(F(s) = H(s)
— Final Value Theorem: tlirgo f@) = ilg%) sF(s)
* Recall that £ {if} = sF(s) — f(0)

> d >*d
* Jim (sF () — £(0)) = im sF(s) = £(0) = lim | e e L= O Lt = m 1)~ £(0)
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* Note this requires that f(¢) and —d{ have Laplace transforms, and tlim f () exists, i.e. it is
—00

stable
— Initial Value Theorem: lim f(¢) = lim sF(s)
t—0+

§—00

Transfer Functions

Transfer Function: The ratio of the Laplace transforms of the output to the input of a system,
assuming that the system was initially at equilibrium (zero state/initial conditions).

o All transfer functions assume zero-state; if we want to look at initial conditions we shouldn’t use transfer
functions

o Given any input u(t) to the system, the output of the system in time domain is y(t) = h(t) * u(t) where
h(t) is the impulse response

Y(s)

o In Laplace domain, the output is Y (s) = H(s)U(s) where H(s) = T(s)

, the Laplace transform of the

impulse response, is the transfer function
e For all LTI systems, the transfer function of the system fully characterizes the system dynamics
: : : n(s) S™ 4 bys" T 4 by,
o Most transfer functions are rational functions H(s) = Ky =K
dp(s) s"+ays L4+ +a,

— Poles are the roots of dg(s)
* These are more important than the zeros
Zeros are the roots of ng(s)
— Poles are denoted with an X while zeros are denoted by O on the complex plane when plotting
— Ky is the transfer function gain
— dg(s) is the characteristic equation of the transfer function/system
* The system’s order is the degree of dgy(s)
o For all causal systems, the relative degree n — m of the transfer function is always greater than or equal
to zero

— Consider H(s) = s; then for an input U(s), we get output Y'(s) = sU(s), which means y(t) = %u(t)
* Such a system cannot be causal, because in order to determine the derivative of the input, the
system needs to somehow anticipate the input’s behaviour in the future
e.g. if we put in a sinusoid, it will be shifted to the left, which is non-causal
* Generally, zeros tend to push the system towards non-causality by moving the response earlier
in time, while poles push the system towards causality by delaying the response
— The transfer function is a proper ratio (if m < n, then it is strictly proper)
— Most systems we will study have strictly proper transfer functions
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o For any LTI system, the poles of a system determines its behaviour
— Note complex poles always come in conjugate pairs
— Any poles on the right hand plane are unstable, i.e. the output will keep growing
* Larger real values lead to faster growth
— Any poles on the left hand plane are convergent, i.e. output eventually settles to 0
* More negative real values lead to faster decay
— Poles with zero real part neither grow nor shrink in magnitude
— Any imaginary component in the pole causes the output to oscillate
* Larger imaginary component lead to higher oscillation frequency
e When there are multiple poles and zeros, they will interact with each other and lead to more interesting
behaviour

*

e H(s)=Kpy where z; are the zeros, p; the are poles
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Figure 1: Behaviour of a system according to its poles.

o The DC gain (or static gain) is the steady-state response of the system to the unit step input
1
— This will give an output Yy(s) = H(s)U(s) = —H(s)
s
. . s 1 o
— Using FVT, tl_l)rgo ys(t) = gl_r%s <;H(s)> = il_I}I(l) H(s)
— This makes the DC gain very easy to find
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