Lecture 6, Jan 25, 2024

Linear Time-Invariant Systems

- Zero state response: the response of a system to some input when the system is initially "at rest", i.e. all inputs, outputs, states and their derivatives are initially zero
 - When we talk about linear systems, we are usually assuming zero-state
- The most important property of linear systems is homogeneity and superposition we can scale and add inputs and the outputs will scale and add accordingly
- In a time-invariant system the parameters C are constant in time, so delaying the input will delay the output by the same amount and leave it otherwise unchanged
 - This also works in reverse if the system output remains the same but delayed when the input is delayed, then the system is time-invariant (we can show that this implies that C is constant)
- These properties let us determine the response of a system to any general input by only knowing its impulse response
 - Any general input u(t) can be approximated by a series of pulses $p_{\Delta}(t) = \begin{cases} \frac{1}{\Delta} & 0 \le t \le \Delta \\ 0 & \text{otherwise} \end{cases}$
 - * The input at $t = k\Delta$ has a value $u(t) = u(k\Delta)$, so we can approximate this as $u(k\Delta) \cdot \Delta$. $p_{\Delta}(t - k\Delta)$
 - Note we multiply by Δ so the integral remains the same
 - * If the system has a response $h_{\Delta}(t)$ to $p_{\Delta}(t)$, then due to homogeneity and time-invariance the response to the above input is $y(t) = y(n\Delta) = u(k\Delta) \cdot \Delta \cdot h_{\Delta}(n\Delta - k\Delta)$
 - * Then the total response to all the pulses is $y(t) = \sum_{k=0}^{\infty} u(k\Delta) \cdot \delta \cdot h_{\Delta}(t-k\Delta)$ In the limit, $p_{\Delta}(t)$ becomes the Dirac delta function $\delta(t)$ (or unit impulse function); $h_{\Delta}(t)$ becomes
 - the impulse response h(t)

- Therefore the output is a convolution: $y(t) = \int_0^\infty u(\tau)h(t-\tau) d\tau = u(t) * h(t)$

- * Formally the convolution integral should be from $-\infty$, however we consider the zero-state response so we don't need to consider t < 0
- * Furthermore, if $t \tau < 0$, we would be considering negative time for h(t), which makes no sense for a causal system (in other words y(t) would depend on values of the input in the future); therefore our upper bound is t instead of ∞
- Note this only applies to LTI systems, or upon linearization assuming a small input region

The response of an LTI system to any arbitrary input u(t) is given by

$$y(t) = \int_0^t u(\tau)h(t-\tau) \,\mathrm{d}\tau = u(t) * h(t)$$

where h(t) is the response of the system to the unit impulse $\delta(t)$.

- Note convolution has the following properties:
 - Commutativity: $x_1(t) * x_2(t) = x_2(t) * x_1(t)$
 - * Obtained by a simple change of variables
 - Associativity: $x_1(t) * [x_2(t) * x_3(t)] = [x_2(t) * x_2(t)] * x_3(t)$
 - Distributivity: $x_1(t) * [x_2(t) + x_3(t)] = x_1(t) * x_2(t) + x_2(t) * x_3(t)$
 - Shift: $x_1(t) * x_2(t-T) = x_1(t-T) * x_2(t)$ * $x_1(t) * x_2(t) = y(t) \Longrightarrow x_1(t-T_1) * x_2(t-T_2) = y(t-T_1-T_2)$ - Impulse: $x(t) * \delta(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau) = x(t)$
 - Width: the convolution of a function covering a length of time T_1 and another function covering

Figure 1: Response of the system to a series of pulses.

Figure 2: Approximation of any input function as a series of impulses.

 T_2 covers a time of $T_1 + T_2$

- Example: find the impulse response of the following system, with $y(0^-) = 0$: $\dot{y} + ky = u(t)$
 - $-\int_{0^{-}}^{0^{+}} \dot{y} \, dt + k \int_{0^{-}}^{0^{+}} y \, dt = \int_{0^{-}}^{0^{+}} \delta(t) \, dt$ * The second term goes to zero since y is a continuous function $\ast\,$ The right hand side is by definition 1 $-\int_{0^{-}}^{0^{+}} \dot{y} \, dt = 1 \implies y(0^{+}) - y(0^{-}) = 1 \implies y(0^{+}) = 1$ Now we use the model of the system to find other times, which gives $y = Ae^{\alpha t} * A\alpha e^{\alpha t} + kAe^{\alpha t} = 0 \implies \alpha = -k$ * $y(0^+) = 1 \implies A = 1$ - This gives $y(t) = h(t) = e^{-kt} 1(t)$ where $1(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$ is the Heaviside step function (sometimes

denoted u(t))

- * We need the 1(t) because for t < 0 we assumed zero-state
- For a general input u(t), $y(t) = \int_0^\infty e^{-k\tau} u(t-\tau) d\tau$ or $\int_0^t e^{-k\tau} u(t-\tau) d\tau$ for a causal system * The Heaviside function is gone because our bound starts at 0, so it is 1 for the entire integration
 - range