Lecture 4, Jan 18, 2024

Dynamic System Modelling

e Electrical, mechanical, fluid and thermal systems can be represented by analogous models, regardless of
the underlying system, by taking an energy perspective
o We divide basic elements into two groups: energy storage and energy dissipation; within energy storage,
elements can be either capacitive or inductive
o Each element is defined by either a through variable (aka t-type, a property that appears to flow through
the element unaltered), or across variable (aka a-type, a property that is measured as a difference at
the two ends of the element)
— Capacitive elements are represented by t-type variables; inductive elements are represented by
a-type variables
— All energy dissipation elements are represented by t-type variables
e Sometimes we might want to use the integrated version of the t-type and a-type variables

Integrated Integrated
Through Through Across Across
System Variable Variable Variable Variable
Electrical Current, i Charge, q Voltage Flux linkage, A,
difference, vy,
Mechanical Force, F Translational Velocity Displacement
translational momentum, P difference, v, difference, ys
Mechanical Torque, T Angular Angular velocity Angular
rotational momentum, 7 difference, wy; displacement
difference, 6,
Fluid Fluid Volume, V Pressure Pressure
volumetric rate difference, P, momentum, ;)
of flow, Q
Thermal Heat flow Heat energy, Temperature )
rate, q H difference, 75, -

Figure 1: A-type and t-type state variables for the four types of systems.
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Figure 2: Energy dissipation elements.

e Note this is referred to as a force-current analogy; alternatively we can have a force-voltage analogy
instead

e Example: cruse control model
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Figure 3: Capacitive energy storage elements.
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Figure 4: Inductive energy storage elements.
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Figure 5: Free body diagram for the cruise control example.



— We apply a force u to the car of mass m, which has a resistive force proportional to the speed
— We want to know how the speed of the car varies in time
— Assumptions:

* Car is a rigid body

* Rotational inertia of the wheels is negligible

* Friction/drag is proportional to speed with a factor of b
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— Change variable to v: ¥+ —v = —

m m
— Typically, we rearrange the system to put all the outputs on the left and all the inputs on the right
— We get a first order linear ODE

Figure 6: Mass-spring-damper example.

o Example: mass-spring-damper system
— The input force f is applied at time 0; we want to know how x (measured from equilibrium) varies
in time as a result of this force
— I, is the equilibrium position of the mass with no force applied; x( is the uncompressed length of
the spring
— In equilibrium, k(xg — z.) = mg
— The full FBD would have the external force m upwards, the spring force k(zo — (z. + x)) upwards,
the gravitational force mg downwards, the damping b& downwards
— k(xg —xe —x) — b —mg+ f =mi
* Notice that the equilibrium condition means the k(xg — x.) cancels with mg, so we have no ¢
term in the final expression
— Final ODE: m& + bi + kx = f (second order linear ODE)
— In general, in mechanical systems moving around their equilibrium state, the holding (static) forces
and moments required for maintaining the equilibrium do not contribute to the motion state
* In this example, the spring force and gravity at equilibrium are the holding forces
* Therefore we don’t have zg, z, or g in the model

e Example: automobile suspension system
— Fach wheel of the car is equipped with a suspension system
* The tire itself acts like a spring
* The suspensions system consists of a spring and a dashpot
— Consider the car moving on a road with some profile; we wish to model the vertical movement of
the car body
— This is a single input, two output system because we also need to model the movement of the
wheel itself to get the movement of the car body
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Figure 7: Automotive suspension system example.

ky(y — x) I I b(y —X)

X y
my i my i
l k,(x—7) k(y—x) l l b(y —x)

Figure 8: Free body diagram for the example.

— Drawing free body diagrams around the equilibrium allows us to ignore gravity and consider only
the forces by the springs and dashpots
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Figure 9: KCL electrical system example.

e Example: electrical system with KCL
— Node 1: ¢* =141 + 1,
— Node 2: i;, = i9 + 14
— Node 3: i(t) = i1 + i3 +ip,
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— This ends up being a third order linear ODE
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