Lecture 26, Apr 12, 2024

Design for Dynamic Compensation

- For PI control, $D_c(s) = 1 + \frac{1}{T_I s}$, the steady-state error of the system is reduced with minimal impact on the bandwidth
 - The gain is high at low frequencies, which reduces the steady-state error
 - * This increases the system type
 - However, it causes the reduction of phase margin at frequencies lower than the breakpoint $\frac{1}{T_I}$, which degrades stability
 - * This makes sense since we know that an integral controller may destabilize the system
 - We usually place the break point $\frac{1}{T_I}$ at a frequency substantially less (one octave to multiple decades) than the crossover frequency, so that the impact on PM is minimal
 - The main practical problem of PI control is *integral windup* (aka *overflow*), leading to saturation of the system
 - * A sudden change in the reference causes the integral term to accumulate too much
 - * This leads to a very sluggish controller

Figure 1: Bode plots of the integral controller.

- We typically use a lag compensator instead, $D_c(s) = \alpha \frac{T_I s + 1}{\alpha T_I s + 1}$, where $\alpha > 1$, so the pole has a lower break point than the zero
 - This can decrease the steady-state error without lowering the crossover frequency
 - The magnitude no longer increases to infinity at lower frequencies and instead converges to α , however the phase at low frequencies now converges to 0, instead of the -90° before
 - * This allows us to still reduce the steady-state error, without sacrificing too much phase margin – We choose the poles and zero relatively close together, and well below (one octave to multiple decades) the crossover frequency (i.e. choose a large T_I)
 - * Having the corner frequencies far from the break point minimizes the reduction in phase margin

Figure 2: Bode plots of the lag compensator.

- Lag compensator design procedure:
 - 1. Determine the gain K required to get the desired PM without compensation, with a 5° to 10° margin to account for the PM reduction of the compensator
 - 2. Draw the Bode plot of the uncompensated open-loop TF and check the low-frequency gain, which gives the steady-state error
 - 3. Determine the value of α to meet the steady-state error requirement α is how much more we need to multiply the low-frequency gain by in order to meet the steady-state error requirement
 - 4. Choose the upper corner frequency $\frac{1}{T_I}$ (the zero) to be one octave to multiple decades below the uncompensated ω_c
 - 5. Iterate on the design and verify that it meets requirements
- Example: $G(s) = \frac{115}{(s+1)(s+3)(s+28)}$, design a lag compensator to get an overshoot of less than 15% and a steady-state error of less than 2%
 - $-M_P < 15\% \implies PM = 56^\circ$ from the plots; having a margin gives $PM = 66^\circ$
 - We have no restrictions on ω_c so pick it so that we get $PM = 66^{\circ}$
 - * Plot the Bode plot and find that $\omega_c = 2.5$ gives us the desired PM; at this value, the gain is currently 0.38
 - * We get K = 2.63 to get us the desired ω_c
 - Using this value of K, the uncompensated K_p is 3.6 (same as the value of the magnitude plot at $\omega = 0$)
 - We want $e_{ss} = \frac{1}{1+K_p} < 0.02 \implies K_p > 49$ instead; choose $K_p = 50$ for some margin * Therefore $\alpha = \frac{50}{2c} = 14$

- Choose
$$\frac{1}{T_I}$$
 one decade below the crossover frequency, and double check that requirements are

- satisfied • A PID compensator $D_c(s) = K(T_D s + 1) \left(1 + \frac{1}{T_I s}\right)$ can be used to improve both transient and steady-state responses
 - Roughly equivalent to combining lead and lag compensators

*
$$D_c(s) = \gamma \left(\frac{T_D s + 1}{\frac{T_D}{\gamma} s + 1}\right) \left(\frac{T_I s + 1}{\gamma T_I s + 1}\right)$$
 for $\gamma > 1$

- For some systems, the Bode plot will cross over the real axis multiple times; this results from the natural modes of vibration of the system
 - Gain stabilization is the simple approach of modifying K to bring the entire plot down
 - Phase stabilization is the use of notch compensators that remove the system's response at the problematic frequencies
- A lead-lag compensator, $D_c(s) = \beta \left(\frac{T_I s + 1}{\beta T_I s + 1}\right) \left(\frac{T_D s + 1}{\alpha T_D s + 1}\right)$ for $\alpha < 1, \beta > 1$, combines both
- Example: given $G(s) = \frac{1}{s^2(s+2)}$, design a lead-lag compensator to get $t_r \le 1$, $M_p \le 40\%$, $t_s \le 10$ (for 2%), and $e_{ss} \leq 10\%$
 - - Convert: $\omega_n \ge 1.8, \ \zeta \ge 0.3 \implies PM \ge 30^\circ, \ \sigma = \zeta \omega_n \ge 0.46, \ e_{ss} = \frac{1}{K_a} \le 0.1$
 - * The requirement for e_{ss} suggests that a lead-lag compensator is likely needed
 - Initially, choose $\omega_n = 2$ and so $\omega_{BW} \approx 2$; start with crossover frequency at half bandwidth, $\omega_c = 1$, and phase margin of 40° (with margin added)
 - At ω_c , the magnitude $|G(j\omega_c)| = 0.447$ for the uncompensated system, so choose $K = \frac{1}{0.447}$ to make this the crossover frequency
 - The phase is -207° at ω_c , so the initial phase margin is -27° we need to add $\phi_{max} = 67^{\circ}$ of phase margin
 - Using the formula, $\alpha = 0.042$

 - Choose $\omega_{max} = \omega_c = 1.0$, so that $D_{c1}(s) = \frac{4.88s + 1}{0.21s + 1}$ * Now at ω_c the magnitude is 4.86, so reduce K further by this factor to get K = 0.46
 - * This gives a PM of 40°
 - Plotting the step response shows that the overshoot and settling time meet requirements, but not rise time (by a very small amount)
 - * Increase K by a small amount to 0.5, which increases overshoot and allows meeting the rise time requirement
 - The existing steady-state error is 0.25; we need $e_{ss} = \frac{1}{K_a} \le 0.1$ so $K_a \ge 10$
 - * The open-loop gain at small frequencies needs to be increased by a factor of 40, so $\beta = 40$
 - Choose the upper corner frequency at a tenth of ω_c , so $\frac{1}{T_I} = 0.1$, giving $T_I = 10 \implies D_{c2}(s) =$

 $40\frac{10s+1}{400s+1}$

* As expected, the open-loop response is faster with worse overshoot

- In time domain this now has an overshoot that is slightly over the limit, so we need to iterate: * Try $\frac{1}{T_I} = 0.05 \implies T_I = 20 \implies D_{c2}(s) = 40 \frac{20s+1}{800s+1}$
 - This now doesn't meet the requirements