
Lecture 26, Apr 12, 2024
Design for Dynamic Compensation

• For PI control, Dc(s) = 1 + 1
TIs

, the steady-state error of the system is reduced with minimal impact
on the bandwidth

– The gain is high at low frequencies, which reduces the steady-state error
* This increases the system type

– However, it causes the reduction of phase margin at frequencies lower than the breakpoint 1
TI

,
which degrades stability

* This makes sense since we know that an integral controller may destabilize the system
– We usually place the break point 1

TI
at a frequency substantially less (one octave to multiple

decades) than the crossover frequency, so that the impact on PM is minimal
– The main practical problem of PI control is integral windup (aka overflow), leading to saturation

of the system
* A sudden change in the reference causes the integral term to accumulate too much
* This leads to a very sluggish controller

Figure 1: Bode plots of the integral controller.

• We typically use a lag compensator instead, Dc(s) = α
TIs + 1

αTIs + 1 , where α > 1, so the pole has a lower
break point than the zero

– This can decrease the steady-state error without lowering the crossover frequency
– The magnitude no longer increases to infinity at lower frequencies and instead converges to α,

however the phase at low frequencies now converges to 0, instead of the −90° before
* This allows us to still reduce the steady-state error, without sacrificing too much phase margin

– We choose the poles and zero relatively close together, and well below (one octave to multiple
decades) the crossover frequency (i.e. choose a large TI)

* Having the corner frequencies far from the break point minimizes the reduction in phase
margin
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Figure 2: Bode plots of the lag compensator.

• Lag compensator design procedure:
1. Determine the gain K required to get the desired PM without compensation, with a 5° to 10°

margin to account for the PM reduction of the compensator
2. Draw the Bode plot of the uncompensated open-loop TF and check the low-frequency gain, which

gives the steady-state error
3. Determine the value of α to meet the steady-state error requirement – α is how much more we

need to multiply the low-frequency gain by in order to meet the steady-state error requirement
4. Choose the upper corner frequency 1

TI
(the zero) to be one octave to multiple decades below the

uncompensated ωc

5. Iterate on the design and verify that it meets requirements
• Example: G(s) = 115

(s + 1)(s + 3)(s + 28) , design a lag compensator to get an overshoot of less than

15% and a steady-state error of less than 2%
– MP < 15% =⇒ PM = 56° from the plots; having a margin gives PM = 66°
– We have no restrictions on ωc so pick it so that we get PM = 66°

* Plot the Bode plot and find that ωc = 2.5 gives us the desired PM; at this value, the gain is
currently 0.38

* We get K = 2.63 to get us the desired ωc

– Using this value of K, the uncompensated Kp is 3.6 (same as the value of the magnitude plot at
ω = 0)

– We want ess = 1
1 + Kp

< 0.02 =⇒ Kp > 49 instead; choose Kp = 50 for some margin

* Therefore α = 50
3.6 = 14

– Choose 1
TI

one decade below the crossover frequency, and double check that requirements are
satisfied

• A PID compensator Dc(s) = K(TDs + 1)
(

1 + 1
TIs

)
can be used to improve both transient and

steady-state responses
– Roughly equivalent to combining lead and lag compensators

* Dc(s) = γ

(
TDs + 1
TD

γ s + 1

)(
TIs + 1

γTIs + 1

)
for γ > 1
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• For some systems, the Bode plot will cross over the real axis multiple times; this results from the
natural modes of vibration of the system

– Gain stabilization is the simple approach of modifying K to bring the entire plot down
– Phase stabilization is the use of notch compensators that remove the system’s response at the

problematic frequencies

• A lead-lag compensator, Dc(s) = β

(
TIs + 1

βTIs + 1

)(
TDs + 1

αTDs + 1

)
for α < 1, β > 1, combines both

• Example: given G(s) = 1
s2(s + 2) , design a lead-lag compensator to get tr ≤ 1, Mp ≤ 40%, ts ≤ 10 (for

2%), and ess ≤ 10%
– Convert: ωn ≥ 1.8, ζ ≥ 0.3 =⇒ PM ≥ 30°, σ = ζωn ≥ 0.46, ess = 1

Ka
≤ 0.1

* The requirement for ess suggests that a lead-lag compensator is likely needed
– Initially, choose ωn = 2 and so ωBW ≈ 2; start with crossover frequency at half bandwidth, ωc = 1,

and phase margin of 40° (with margin added)
– At ωc, the magnitude |G(jωc)| = 0.447 for the uncompensated system, so choose K = 1

0.447 to
make this the crossover frequency

– The phase is −207° at ωc, so the initial phase margin is −27° – we need to add ϕmax = 67° of
phase margin

– Using the formula, α = 0.042
– Choose ωmax = ωc = 1.0, so that Dc1(s) = 4.88s + 1

0.21s + 1
* Now at ωc the magnitude is 4.86, so reduce K further by this factor to get K = 0.46
* This gives a PM of 40°

– Plotting the step response shows that the overshoot and settling time meet requirements, but not
rise time (by a very small amount)

* Increase K by a small amount to 0.5, which increases overshoot and allows meeting the rise
time requirement

– The existing steady-state error is 0.25; we need ess = 1
Ka

≤ 0.1 so Ka ≥ 10
* The open-loop gain at small frequencies needs to be increased by a factor of 40, so β = 40

– Choose the upper corner frequency at a tenth of ωc, so 1
TI

= 0.1, giving TI = 10 =⇒ Dc2(s) =

40 10s + 1
400s + 1
* As expected, the open-loop response is faster with worse overshoot

– In time domain this now has an overshoot that is slightly over the limit, so we need to iterate:
* Try 1

TI
= 0.05 =⇒ TI = 20 =⇒ Dc2(s) = 40 20s + 1

800s + 1
• This now doesn’t meet the requirements
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