Lecture 25, Apr 8, 2024

Dynamic Response from Frequency Response
o For common systems, typically the open-loop transfer function has |KG(jw)| > 1 for w < w,. and
|KG(jw)| < 1 for w > w,

— Therefore at w < we, |T (jw)| = 1, and at w > w,, |T (jw)| = |KG(jw)]
— The magnitude of the closed-loop gain near w, is closely related to the phase margin
* Note again that this peak is not exactly at w,
—e.g for K = 1, if PM = 45°, then /G(jw.) = —180° + PM = —135°, and |G (jw.)| = 1 by
1

G
definition, then |7 (jw.)| = ’1 ((J;wc) = ——— — = 1.31
+G(jwe) | |\/(1 + cos(—135°))2 + sin®(—135°)]
IKG(aw)| — 0
/ PM =22
220 o) /\\/
g 1.0 I L\
=07 / \ -3
3
g PM “’O\i\\
%: 0.2 : \ , , E
gﬂ \\/T(Iw)\ = [KG(jw)|
S 01 N -20
O Bandwidth ) : 10\
@, o. 10w,

.
w (rad/sec)

Figure 1: Closed-loop gain at w, for different phase margins.

e By the above calculation, PM = 90°, then w. = wpw exactly; if PM < 90°, then w, < wpw < 2w,

— wpw is always within 1 octave of w,
— Bandwidth is roughly equal to the natural frequency of the system, again within 1 octave

— We typically define a closed-loop system by its bandwith and phase margin

* (=~ for PM < 65° and w,, ~ wpw
e We can find system type in the frequency response; for a unity feedback system:
— A type 0 system’s open-loop magnitude plot starts with a slope of 0 at low frequencies
* To have a slope of 0 at low frequencies means our class 1 term has a power of n = 0, so it
does not contribute an initial slope, so this means no poles at the origin and thus type 0
* The low-frequency gain, Ky, is equal to the position constant K, since K, = il_I,% KD.G(s) =

lim | KD, G(j)|
w—r
* We can control the steady-state error by controlling the gain K — we are shifting the entire
plot up or down, which changes the low-frequency gain
— A type 1 system’s open-loop magnitude plot starts with a slope of -1

v

* Now K, = lir% sKD.G(s) = limow|KDcG(jw)| so at low frequencies, |K D.G(jw)| =
S— w—r w
* We can find K, by going to w = 1 and finding the intersection of the initial asymptote with

the vertical line w =1
— A type 2 system’s open-loop magnitude plot starts with a slope of -2

K
* At low frequencies, |K D.G(jw)| ~ —
w
* Similarly, we can find K, by finding the intersection of the initial slope —2 asymptote with

the vertical line w =1



Lead Compensator Design

o Consider a PD controller, D.(s) = (Tps+ 1), which is added to improve stability and dynamic response
— This is a numerator class 2 term, which steps up the slope of the magnitude plot at the break

oint —

p T,
— This essentially increases w., which increases wpyw and therefore w,, which speeds up the system

— This also increases the phase (since it’s a denominator term), which increases the phase margin,
which increases damping
— Shortcomings:
* At low frequencies the gain is 1, so this doesn’t do much to the steady-state response
* At high frequencies (i.e. noise), the gain is very high, so the noise is amplified
e Instead, we often use a lead compensator, which has a gain that flattens at higher
frequencies, to avoid noise amplification
— Specify the break point so that the amount of increased phase desired happens near the crossover,
so we can increase the PM
* From the design requirements and the Bode plot of the uncompensated system, we can see
how much additional PM we need
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Figure 2: Bode magnitude plot for PD control.
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Figure 3: Bode phase plot for PD control.

Tps+1
o Practically, we use a lead compensator, D.(s) = 7?7—:_1 where a < 1, with corner frequencies
alps

1 1 .
wp = TS (low) and wyp, = Ty (high)

— The additional denominator class 2 term steps the slope down at higher frequencies (so the
magnitude plot becomes flat), so we avoid amplifying high frequency noise
— This comes at the cost of having the phase going up and then back down (instead of staying at
+90° like the PD controller); the corner frequencies need to be chosen carefully so we get the
maximum amount of increase to the PM
* We typically choose wy, > wy, typically wy, > 5w,



— The phase increase is ¢ = Z/D.(jw) = tan~ ! (Tpw) — tan~* (aTpw)

1
* This gives Gmae = tan ! (

11—«
1+«

* sin d)max =

1
Ta —tan~!(v/a) occurring at wyqe = Tova (by differentiation)

1 —sin ¢maz
o0=——"-"
1+ sin ¢iaz

o This gives us a simpler form to find « from ¢,as
e In design, we decide how much ¢,,,4, to use, and then we obtain «

*

— is the lead ratio; the higher the lead ratio, the more we approach a PD compensator
«@

o Selecting this is a tradeoff between a desired PM (for good damping) and an acceptable
level of high-frequency noise amplification

¢ Rule of thumb is to have have a lead compensator contribute no more than 70° to the
phase; if we need even more, a double lead compensator can be used
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Figure 4: Bode magnitude plot for lead compensator.
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Figure 5: Bode phase plot for lead compensator.

Both PD controller and lead compensator have no poles at the origin, so the system type is not changed

1
Example: for the plant ———
s

(s +

0’ design a lead compensator to obtain a response to a unit-ramp input

with an overshoot Mp < 25% and steady-state error of no more than 0.1
— The open-loop transfer function is type 1 (we couldn’t have changed it with a lead compensator

anyway)

— Open loop TF: L(s) =

— For R(s) =

= €ss =
s2’

Tps+1 1

aTps+1 s(s+1)
1

lim
s=0 s+ KD.(s)

K

1
(s}rl) = KD.(0)’ therefore we need K, = KD.(0) > 10

from the steady-state error requirement
* This yields a value of K = 10, since the lead compensator always has D.(0) = 1
* Since we don’t have a lag compensator we have to use K for the steady-state response; if we
had one we could save K to optimize the dynamic response
— For Mp < 25%, we use the direct relation to get PM = 45°
— PM of the uncompensated system is only 20°, so we need to add more than 25°
* The phase increase needs to be more than 25°, since the compensator zero increases w, due to
the increase in slope, and the overall trend in phase is decreasing



* We need to add a safety margin
1
— For ¢pmae = 40° of lead, — =5
@

— To get Tp we normally look at the desired w. (which influences system speed)
* For this question we don’t have a restriction on speed

1
*— = o‘-7rrl(1,ac\/a

Tp
* By trial and error selecting wy,qe, we find Tp = 0.5
S
. s+1
— The final controller is D, (s) = 10-2 1
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Figure 6: Bode plot of the example lead compensated system.

e For a lead compensator, we specify the parameters from design requirements as follows:
— The crossover frequency w., which determines the bandwidth hence and speed of response
— The phase margin PM, which determines the damping ratio and overshoot
— The low-frequency gain K, which determines the steady-state error

I 1, lead tion i the rati e
n general, lead compensation increases the ratio - D.G{0)
e Design procedure for lead compensator:
1. Determine K to satisfy error or bandwidth requirements
— For error, pick K to satisfy the error constant
— For bandwidth, pick K so that w. is within a factor of two below the desired closed-loop
bandwidth
2. Evaluate the PM of the uncompensated system using this K
3. Find the amount of PM increase we need (add a safety margin, usually 5° or more)
1 —sin ¢maz
1+sin ¢maz

1
5. Pick the desired crossover frequency and make w4, there, and determine T using 7= Winaz VO
D

4. Determine o =



6.

o Example: type 1 servo mechanism, KG(s) = K
s
obtain PM T 45° and K, = 101
1.

T W N

. Choose a desired w,, e.g. 6 (in this case we have no hard speed requirement), giving Tp =

. Draw the new Bode plot for D (s)

Draw the compensated frequency response and check that the PM requirement is satisfied; iterate

if not
10

; design a lead compensator to
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. Uncompensated PM is —4° at w. =~ 4
. We want the lead to add ¢ = 54° (with a safety margin of 5°)
. Use formulas to get o = 0.1
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— We see that the PM requirement is not satisfied!

— More iterations show that a single lead compensator cannot meet this PM requirement due to

the high-frequency slope of -3

. Double the lead compensator; on examination this gives PM = 46°, meeting the requirements

10! — 20
_g 0 -:E.-::.E-h - KGDL‘I
n\ -
g 10 S/ SKGD,, 0 -
= N a < kS
g 107! s o9
2 '\\ ‘\‘
—2 S —40
10 107! 100 10! KG 107
w (rad/sec)
(a)
GDL‘]
=50
/;D o ——q-1-'|==='.:,':_:——'~‘\‘
E 100 ~dL % I | GD,,
— ~ ~
£ —200 S< Y
= G —jw \ SS U
—-250 -
107! 10° 23° 10! 46° 10%
w (rad/sec)
(b)

Figure 7: Bode plots for the uncompensated system, and the two iterations of lead compensators.
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