
Lecture 25, Apr 8, 2024
Dynamic Response from Frequency Response

• For common systems, typically the open-loop transfer function has |KG(jω)| ≫ 1 for ω ≪ ωc and
|KG(jω)| ≪ 1 for ω ≫ ωc

– Therefore at ω ≪ ωc, |T (jω)| ≈ 1, and at ω ≫ ωc, |T (jω)| ≈ |KG(jω)|
– The magnitude of the closed-loop gain near ωc is closely related to the phase margin

* Note again that this peak is not exactly at ωc

– e.g. for K = 1, if PM = 45°, then ∠G(jωc) = −180° + PM = −135°, and |G(jωc)| = 1 by

definition, then |T (jωc)| =
∣∣∣∣ G(jωc)
1 + G(jωc)

∣∣∣∣ = 1
|
√

(1 + cos(−135°))2 + sin2(−135°)|
= 1.31

Figure 1: Closed-loop gain at ωc for different phase margins.

• By the above calculation, PM = 90°, then ωc = ωBW exactly; if PM < 90°, then ωc ≤ ωBW ≤ 2ωc

– ωBW is always within 1 octave of ωc

– Bandwidth is roughly equal to the natural frequency of the system, again within 1 octave
– We typically define a closed-loop system by its bandwith and phase margin

* ζ ≈ PM°
100 for PM < 65° and ωn ≈ ωBW

• We can find system type in the frequency response; for a unity feedback system:
– A type 0 system’s open-loop magnitude plot starts with a slope of 0 at low frequencies

* To have a slope of 0 at low frequencies means our class 1 term has a power of n = 0, so it
does not contribute an initial slope, so this means no poles at the origin and thus type 0

* The low-frequency gain, K0, is equal to the position constant Kp, since Kp = lim
s→0

KDcG(s) =
lim
ω→0

|KDcG(jω)|
* We can control the steady-state error by controlling the gain K – we are shifting the entire

plot up or down, which changes the low-frequency gain
– A type 1 system’s open-loop magnitude plot starts with a slope of -1

* Now Kv = lim
s→0

sKDcG(s) = lim
ω→0

ω|KDcG(jω)| so at low frequencies, |KDcG(jω)| ≈ Kv

ω
* We can find Kv by going to ω = 1 and finding the intersection of the initial asymptote with

the vertical line ω = 1
– A type 2 system’s open-loop magnitude plot starts with a slope of -2

* At low frequencies, |KDcG(jω)| ≈ Ka

ω2
* Similarly, we can find Ka by finding the intersection of the initial slope −2 asymptote with

the vertical line ω = 1
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Lead Compensator Design

• Consider a PD controller, Dc(s) = (TDs + 1), which is added to improve stability and dynamic response
– This is a numerator class 2 term, which steps up the slope of the magnitude plot at the break

point 1
TD

– This essentially increases ωc, which increases ωBW and therefore ωn which speeds up the system
– This also increases the phase (since it’s a denominator term), which increases the phase margin,

which increases damping
– Shortcomings:

* At low frequencies the gain is 1, so this doesn’t do much to the steady-state response
* At high frequencies (i.e. noise), the gain is very high, so the noise is amplified

• Instead, we often use a lead compensator, which has a gain that flattens at higher
frequencies, to avoid noise amplification

– Specify the break point so that the amount of increased phase desired happens near the crossover,
so we can increase the PM

* From the design requirements and the Bode plot of the uncompensated system, we can see
how much additional PM we need

Figure 2: Bode magnitude plot for PD control.

Figure 3: Bode phase plot for PD control.

• Practically, we use a lead compensator, Dc(s) = TDs + 1
αTDs + 1 where α < 1, with corner frequencies

ωl = 1
TD

(low) and ωh = 1
αTD

(high)
– The additional denominator class 2 term steps the slope down at higher frequencies (so the

magnitude plot becomes flat), so we avoid amplifying high frequency noise
– This comes at the cost of having the phase going up and then back down (instead of staying at

+90° like the PD controller); the corner frequencies need to be chosen carefully so we get the
maximum amount of increase to the PM

* We typically choose ωh ≫ ωl, typically ωh > 5ωl
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– The phase increase is ϕ = ∠Dc(jω) = tan−1(TDω) − tan−1(αTDω)

* This gives ϕmax = tan−1
(

1√
α

)
− tan−1(

√
α) occurring at ωmax = 1

TD
√

α
(by differentiation)

* sin ϕmax = 1 − α

1 + α
=⇒ α = 1 − sin ϕmax

1 + sin ϕmax
• This gives us a simpler form to find α from ϕmax

• In design, we decide how much ϕmax to use, and then we obtain α

* 1
α

is the lead ratio; the higher the lead ratio, the more we approach a PD compensator
• Selecting this is a tradeoff between a desired PM (for good damping) and an acceptable

level of high-frequency noise amplification
• Rule of thumb is to have have a lead compensator contribute no more than 70° to the

phase; if we need even more, a double lead compensator can be used

Figure 4: Bode magnitude plot for lead compensator.

Figure 5: Bode phase plot for lead compensator.

• Both PD controller and lead compensator have no poles at the origin, so the system type is not changed
• Example: for the plant 1

s(s + 1) , design a lead compensator to obtain a response to a unit-ramp input

with an overshoot MP < 25% and steady-state error of no more than 0.1
– The open-loop transfer function is type 1 (we couldn’t have changed it with a lead compensator

anyway)
– Open loop TF: L(s) = K

TDs + 1
αTDs + 1 · 1

s(s + 1)
– For R(s) = 1

s2 , ess = lim
s→0

1
s + KDc(s) 1

(s+1)
= 1

KDc(0) , therefore we need Kv = KDc(0) ≥ 10

from the steady-state error requirement
* This yields a value of K = 10, since the lead compensator always has Dc(0) = 1
* Since we don’t have a lag compensator we have to use K for the steady-state response; if we

had one we could save K to optimize the dynamic response
– For MP < 25%, we use the direct relation to get PM = 45°
– PM of the uncompensated system is only 20°, so we need to add more than 25°

* The phase increase needs to be more than 25°, since the compensator zero increases ωc due to
the increase in slope, and the overall trend in phase is decreasing
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* We need to add a safety margin
– For ϕmax = 40° of lead, 1

α
= 5

– To get TD we normally look at the desired ωc (which influences system speed)
* For this question we don’t have a restriction on speed
* 1

TD
= ωmax

√
α

* By trial and error selecting ωmax, we find TD = 0.5

– The final controller is Dc(s) = 10
s
2 + 1
s

10 + 1

Figure 6: Bode plot of the example lead compensated system.

• For a lead compensator, we specify the parameters from design requirements as follows:
– The crossover frequency ωc, which determines the bandwidth hence and speed of response
– The phase margin PM, which determines the damping ratio and overshoot
– The low-frequency gain K, which determines the steady-state error
– In general, lead compensation increases the ratio ωc

KDcG(0)
• Design procedure for lead compensator:

1. Determine K to satisfy error or bandwidth requirements
– For error, pick K to satisfy the error constant
– For bandwidth, pick K so that ωc is within a factor of two below the desired closed-loop

bandwidth
2. Evaluate the PM of the uncompensated system using this K
3. Find the amount of PM increase we need (add a safety margin, usually 5° or more)
4. Determine α = 1 − sin ϕmax

1 + sin ϕmax

5. Pick the desired crossover frequency and make ωmax there, and determine TD using 1
TD

= ωmax

√
α
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6. Draw the compensated frequency response and check that the PM requirement is satisfied; iterate
if not

• Example: type 1 servo mechanism, KG(s) = K
10

s(s/2.5 + 1)(s/6 + 1) ; design a lead compensator to

obtain PM = 45° and Kv = 10
1. 1

Kv
= 1

10 = lim
s→0

s
1

1 + KDc(s)G(s)
1
s2 =⇒ K = 1

2. Uncompensated PM is −4° at ωc ≈ 4
3. We want the lead to add ϕmax = 54° (with a safety margin of 5°)
4. Use formulas to get α = 0.1
5. Choose a desired ωc, e.g. 6 (in this case we have no hard speed requirement), giving TD = 1

ωc
√

α
≈

0.5
6. Draw the new Bode plot for Dc1(s) = s/2 + 1

s/20 + 1 = 10 s + 2
s + 20

– We see that the PM requirement is not satisfied!
– More iterations show that a single lead compensator cannot meet this PM requirement due to

the high-frequency slope of -3
7. Double the lead compensator; on examination this gives PM = 46°, meeting the requirements

Figure 7: Bode plots for the uncompensated system, and the two iterations of lead compensators.

5


	Lecture 25, Apr 8, 2024
	Dynamic Response from Frequency Response
	Lead Compensator Design



