
Lecture 24, Apr 4, 2024
System Response from Frequency Response

Figure 1: Typical closed-loop system and root locus.

Figure 2: Open-loop Bode plot for the example system.

• Consider a unity feedback system with open-loop transfer function L(s) = KG(s)
• A typical root locus starts with all poles on the left hand side, and as K increases, the locus crosses the

imaginary axis at some point and the system becomes unstable
• The Bode plot of KG(jωc) has a magnitude plot that is simply shifted vertically, and a phase plot that

is identical as G(jωc)
– Multiplying by K increases the magnitude by a constant factor at all frequencies and has a phase

of 0
• The conditions for marginal/neutral stability are |KG(jωc)| = 1 and ∠G(jωc) = −180°
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– These are the same conditions as having the closed-loop poles being on the imaginary axis for a
root locus

– We can look at the phase plot to see the ωc that gives a phase of −180°, and then look at the
value of K that gives magnitude 1 at ωc

• For most systems, decreasing K from the neural stability value will make the system stable, while
increasing it will make the system unstable

– Therefore if |KG(jω) < 1| at ∠G(jω) = −180° then the system is stable; otherwise it is unstable
– Note this does not apply if the open loop Bode plot crosses |KG(jω)| = 1 more than once

* For such systems we need to use techniques to shift the plot so it crosses unity only once
• The degree of stability is how far we are from the value of K that gives marginal stability; we measure

this through two quantities:
– Gain margin (GM): the factor by which K can be increased before the system becomes unstable

* On a Bode plot, this is how much we can move the magnitude plot up before we reach
|KG(jω)| = 1

* This is the value of 1
|KG(jω)| where ∠G(jω) = −180°

• On a decibel scale this is the vertical distance between the value of the magnitude plot
and the 0 decibel line

* On a root locus, this is the ratio of the K value that puts the closed-loop poles on the imaginary
axis and the K value that gives the poles given

* GM < 1 (or negative in decibels) indicates an unstable system
– Phase margin (PM): the amount by which the phase G(jω) exceeds −180° (less negative) when

|KG(jω)| = 1
* On a Bode plot, find the value of ω that gives a magnitude of 1, and the phase margin is the

value of the phase at this point minus −180°
* PM < 0 indicates an unstable system

• A value of PM = 30° is typically regarded as the lowest value for a safe stability margin
• In design we try to go for an ideal value of PM = 90° but usually we have to compromise

* The PM for any value of K can be obtained directly from the Bode plot for G(jω) (i.e. K = 1),
by finding the ω that gives |G(jω)| = 1/K and taking the phase at this frequency, subtracting
−180°
• This is because |G(jω)| = 1/K =⇒ |KG(jω)| = 1
• We can also go backwards; for a value of PM, note the required ω, find the value of |G(jω)|

and take K = 1/|G(jω)|
• The (gain) crossover frequency ωc is the frequency at which the open-loop magnitude is unity

– This is highly correlated with the closed-loop bandwidth and hence the system response speed
– PM = ∠L(jωc) − (−180°)

• PM is more commonly used than GM in practice:
– For a typical second order system GM = ∞ since phase reaches −180° only at ω → ∞, at which

point |G(jω)| → 0
– PM is also closely related to the system damping ratio

• Consider G(s) = ω2
n

s(s + 2ζωn) =⇒ T (s) = ω2
n

s2 + 2ζωns + ω2
n

, a typical closed-loop system

– We can derive PM = tan−1
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* PM = ∠G(jωc) − (−180°)
= ∠ω2

n − ∠(jωc) − ∠(jωc + 2ζωn) + 180°

= 0 − 90° − tan−1
(

ωc

2ζωn

)
+ 180°

= 90° − tan−1
(

ωc

2ζωn

)

= 90° − tan−1


√√

1 + 4ζ4 − 2ζ2

2ζ


= tan−1

 2ζ√√
1 + 4ζ4 − 2ζ2


– For PM < 65°, we can use a linear approximation ζ ≈ PM°

100
* This is used as a rule of thumb for other systems as well

– The resonant peak Mr and overshoot Mp can be obtained from PM as well since both are related
to ζ

* This can also serve as a rough estimate for systems other than the second-order closed-loop
system we have

Figure 3: Relationship between ζ and PM.

Figure 4: Relationship between Mp and Mr and PM.
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• For any stable minimum phase system (i.e. no poles or zeros in the RHP), the phase of G(jω) is uniquely
related to the magnitude of G(jω)

– ∠G(jω0) = 1
π

� ∞

−∞

dM

du
W (u) du where


M = log|G(jω)|
u = log(ω/ω0)

W ≈ π2

2 δ(u)
* The phase is related to the slope of the magnitude plot on a log-log scale, near the frequency

ω0 we want to study
* δ(u) is a weighting function (plot shown below)

• This applies a much higher weight to values near u = 0
• Even though the integral goes to infinity on both sides, the weighting makes it insignificant

– If the slope of the gain is nearly constant around ω0, we can take out dM

du

– ∠G(jω0) ≈ π

2
dM

du
= n · 90° if dM

du
is constant for a decade around ω0

Figure 5: Plot of the weighting function.

• This means that if we can manage |KG(jω)| to have a constant slope of -1 for a decade around the
crossover frequency ωc (i.e. where |KG(jω)| = 1), we will get a phase of −90° at ωc, which gives a PM
of 90°, guaranteeing good stability of the system and a high ζ to reduce overshoot

– This is the rule of thumb for design
– We can adjust the value of K to shift the plot so that the slope is -1 at unity gain, or we can add

compensators to change the slope for the same value of K

Example: Spacecraft Attitude Control

• Find a suitable KDc(s) to provide Mp < 15% and a bandwidth of 0.2 rad/s for the plant G(s) = 1
s2

and determine the frequency where the sensitivity function |S| = 0.7
– 1

s2 is class 1, so the phase plot is a constant −180°, and the system is always unstable; the slope
of the magnitude plot is -2 which is also not good

• We want to increase the slope, so we want to add a numerator class 2 term
– Use a PD controller: KDc(s) = K(TDs + 1)

• Start with the bandwidth of 0.2 rad/s which gives us a hint for ωc; we choose ωc = 0.2
• The break point of the controller is 1

TD
– We need to put this break point sufficiently before ωc, so we have a sufficiently constant slope

around ωc

– Choose the break point to be 1/4 of ωc, so have ω1 = 0.05 and TD = 20
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• Plot |DcG(jω)| for K = 1, and notice the magnitude at 0.2 – in this case we have 100
• Therefore we choose K = 1

|DcG(jωc|
= 0.01

• Validate our assumption that the bandwidth is around 0.2:
– |T (jω)| = |KDcG|

|1 + KDcG|
– From the plot we can see that the bandwidth is around 0.25 (when magnitude reaches around

0.7), which is close to ωc

• For a unity feedback system, S(s) = E(s)
Θ(s) (in general 1 − T (s))

– We want the sensitivity function to be low at the frequencies we work with, so the system is
insensitive to an error in the reference

• The disturbance rejection bandwidth, ωDRB, is the max frequency at which the disturbance rejection
(i.e. sensitivity S) is below a certain amount, usually -3 decibels

– We always want to maximize this

Figure 6: Bode magnitude plots of the closed-loop transfer function and sensitivity transfer function.
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