Lecture 24, Apr 4, 2024

System Response from Frequency Response
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Figure 2: Open-loop Bode plot for the example system.

o Consider a unity feedback system with open-loop transfer function L(s) = KG(s)

e A typical root locus starts with all poles on the left hand side, and as K increases, the locus crosses the
imaginary axis at some point and the system becomes unstable

o The Bode plot of KG(jw,.) has a magnitude plot that is simply shifted vertically, and a phase plot that

is identical as G(jw,)

— Multiplying by K increases the magnitude by a constant factor at all frequencies and has a phase

of 0

o The conditions for marginal /neutral stability are |KG(jw.)| =1 and ZG(jw.) = —180°



— These are the same conditions as having the closed-loop poles being on the imaginary axis for a
root locus
— We can look at the phase plot to see the w. that gives a phase of —180°, and then look at the
value of K that gives magnitude 1 at w,
o For most systems, decreasing K from the neural stability value will make the system stable, while
increasing it will make the system unstable
— Therefore if |[KG(jw) < 1| at ZG(jw) = —180° then the system is stable; otherwise it is unstable
— Note this does not apply if the open loop Bode plot crosses | KG(jw)| = 1 more than once
* For such systems we need to use techniques to shift the plot so it crosses unity only once
e The degree of stability is how far we are from the value of K that gives marginal stability; we measure
this through two quantities:
— Gain margin (GM): the factor by which K can be increased before the system becomes unstable
* On a Bode plot, this is how much we can move the magnitude plot up before we reach
KG(jw)| = 1 1
* . oy R
This is the value of KGGw) where ZG(jw) = —180
e On a decibel scale this is the vertical distance between the value of the magnitude plot
and the 0 decibel line
* On a root locus, this is the ratio of the K value that puts the closed-loop poles on the imaginary
axis and the K value that gives the poles given
* GM < 1 (or negative in decibels) indicates an unstable system
— Phase margin (PM): the amount by which the phase G(jw) exceeds —180° (less negative) when
[KG(jw)| =1
* On a Bode plot, find the value of w that gives a magnitude of 1, and the phase margin is the
value of the phase at this point minus —180°
* PM < 0 indicates an unstable system
e A value of PM = 30° is typically regarded as the lowest value for a safe stability margin
e In design we try to go for an ideal value of PM = 90° but usually we have to compromise
* The PM for any value of K can be obtained directly from the Bode plot for G(jw) (i.e. K = 1),
by finding the w that gives |G(jw)| = 1/K and taking the phase at this frequency, subtracting
—180°
o This is because |G(jw)| = 1/K = |KG(jw)| =1
o We can also go backwards; for a value of PM, note the required w, find the value of |G (jw)]
and take K = 1/|G(jw)|
o The (gain) crossover frequency w, is the frequency at which the open-loop magnitude is unity
— This is highly correlated with the closed-loop bandwidth and hence the system response speed
- PM = ZL(jw.) — (—180°)
e PM is more commonly used than GM in practice:
— For a typical second order system GM = oo since phase reaches —180° only at w — oo, at which
point |G(jw)| — 0
— PM is also closely related to the system damping ratio
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* PM = ZG(jw.) — (—180°)
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— For PM < 65°, we can use a linear approximation { =~ 100

* This is used as a rule of thumb for other systems as well
— The resonant peak M, and overshoot M, can be obtained from PM as well since both are related
to ¢
* This can also serve as a rough estimate for systems other than the second-order closed-loop
system we have
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Figure 3: Relationship between ¢ and PM.
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Figure 4: Relationship between M, and M, and PM.



« For any stable minimum phase system (i.e. no poles or zeros in the RHP), the phase of G(jw) is uniquely
related to the magnitude of G(jw)
w M = log|G(jw)|
1 [ —
— ZG(jwo) = */ — W (u) du where ¢ ¥ = log(w/wo)

T J_o du 2

* The phase is related to the slope of the magnitude plot on a log-log scale, near the frequency

wp we want to study
* d(u) is a weighting function (plot shown below)

e This applies a much higher weight to values near u =0
¢ Even though the integral goes to infinity on both sides, the weighting makes it insignificant

— If the slope of the gain is nearly constant around wg, we can take out T
u
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Figure 5: Plot of the weighting function.

o This means that if we can manage |KG(jw)| to have a constant slope of -1 for a decade around the
crossover frequency w,. (i.e. where |KG(jw)| = 1), we will get a phase of —90° at w.., which gives a PM
of 90°, guaranteeing good stability of the system and a high ¢ to reduce overshoot

— This is the rule of thumb for design
— We can adjust the value of K to shift the plot so that the slope is -1 at unity gain, or we can add
compensators to change the slope for the same value of K

Example: Spacecraft Attitude Control

1
o Find a suitable K D.(s) to provide M, < 15% and a bandwidth of 0.2rad/s for the plant G(s) = —
s

and determine the frequency where the sensitivity function |S| = 0.7

1
— — is class 1, so the phase plot is a constant —180°, and the system is always unstable; the slope

gf the magnitude plot is -2 which is also not good
e« We want to increase the slope, so we want to add a numerator class 2 term
— Use a PD controller: KD, (s) = K(Tps+1)
e Start with the bandwidth of 0.2rad/s which gives us a hint for w.; we choose w, = 0.2

e The break point of the controller is T

D
— We need to put this break point sufficiently before w., so we have a sufficiently constant slope

around w,
— Choose the break point to be 1/4 of w,., so have wy = 0.05 and Tp = 20



Plot |D.G(jw)| for K = 1, and notice the magnitude at 0.2 — in this case we have 100

1
e Therefore we choose K = —— = 0.01
| DG (jwe|
e Validate our assumption that the bandwidth is around 0.2:
TG = R
I T T KD.G

— From the plot we can see that the bandwidth is around 0.25 (when magnitude reaches around
0.7), which is close to w,
E(s
o For a unity feedback system, S(s) = 95; (in general 1 — T (s))
S
— We want the sensitivity function to be low at the frequencies we work with, so the system is
insensitive to an error in the reference
e The disturbance rejection bandwidth, wprp, is the max frequency at which the disturbance rejection
(i.e. sensitivity S) is below a certain amount, usually -3 decibels
— We always want to maximize this
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Figure 6: Bode magnitude plots of the closed-loop transfer function and sensitivity transfer function.
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