Lecture 23, Apr 1, 2024

Plotting Bode Plots

- Consider a general transfer function $G(s) = K \frac{(s+z_1) \dots (s^2 + 2\zeta_1 \omega_{n1} s + \omega_{n1}^2) \dots}{(s+p_1) \dots (s^2 + 2\zeta_a \omega_{na} s + \omega_{na}^2)}$ z_i and p_i are real; the complex poles and zeros are in the quadratic factors, represented by their
 - natural frequencies and damping ratios

Rearrange as
$$G(s) = K_0 s^n \frac{(\tau_1 s + 1)(\tau_2 s + 1)\dots\left(\left(\frac{s}{\omega_{n1}}\right)^2 + 2\zeta_1\left(\frac{s}{\omega_{n1}}\right) + 1\right)\dots}{(\tau_a s + 1)(\tau_b s + 1)\dots\left(\left(\frac{s}{\omega_{na}}\right)^2 + 2\zeta_a\left(\frac{s}{\omega_{na}}\right) + 1\right)\dots}$$

- We factor out the poles and zeros at the origin to s^n , where n could be positive or negative
- $-\tau_1, \tau_2, \ldots$ correspond to the real zeros, τ_a, τ_b, \ldots correspond to the real poles
- $-\omega_{n1},\omega_{n2},\ldots$ and ζ_1,ζ_2 correspond to the complex zeros; $\omega_{na},\omega_{nb},\ldots$ and ζ_a,ζ_b correspond to the complex poles

- Substitute
$$s = j\omega$$
: $G(s) = K_0(j\omega)^n \frac{(j\omega\tau_1 + 1)(j\omega\tau_2 + 1)\dots\left(\left(\frac{j\omega}{\omega_{n1}}\right)^2 + 2\zeta_1\left(\frac{j\omega}{\omega_{n1}}\right) + 1\right)\dots}{(j\omega\tau_a + 1)(j\omega\tau_b + 1)\dots\left(\left(\frac{j\omega}{\omega_{na}}\right)^2 + 2\zeta_a\left(\frac{j\omega}{\omega_{na}}\right) + 1\right)\dots}$

– This is the *Bode form* of the transfer function

- The Bode form is a composite of simpler transfer functions of the 3 classes:
 - 1. $K_0(j\omega)^n$ where $n \in \mathbb{Z}$
 - 2. $(j\omega\tau+1)^{\pm 1}$ (if the power is 1, then it is numerator class 2, while power -1 is denominator class 2)
 - 3. $\left(\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta\left(\frac{j\omega}{\omega_n}\right) + 1\right)^{\pm 1}$ (power 1 \rightarrow numerator class 3; -1 \rightarrow denominator class 3)
- To find the bode plot of a composite transfer function, we plot the Bode plots of each of the individual classes, and sum them up, since multiplication is addition of logs
- Class 1: $K_0(j\omega)^n$
 - Magnitude: $\log K_0 |(j\omega)^n| = \log K_0 + n \log \omega$
 - * The magnitude plot is a straight line with slope n (or n times 20 decibels per decade)
 - For $\omega = 1$, the value of the gain is $\log K_0$
 - * For very low values of ω we will see that this is the only class that affects the slope of the Bode plot
 - Phase: $\angle K_0(j\omega)^n = n \cdot 90^\circ$
 - * The phase plot is a constant value, determined by n
- Class 2: $(j\omega\tau + 1)^{\pm 1}$

 - For $\omega \tau \ll 1$, $(j\omega\tau + 1)^{\pm 1} \approx 1$ For $\omega\tau \gg 1$, $(j\omega\tau + 1)^{\pm 1} \approx (j\omega\tau)^{\pm 1}$
 - The break point is defined as $\omega = \frac{1}{2}$
 - Magnitude:
 - * Below the break point, the gain is approximately a constant 1
 - * Above the break point, the gain behaves like a class 1 term of $\tau^{\pm 1}(j\omega)^{\pm 1}$
 - The slope is a constant 1 or -1 (or ± 20 decibels per decade) for this asymptote
 - The intercept is at $\tau^{\pm 1}$
 - * At the break point, the gain is a factor of 1.41 (or 3 decibels) above for numerator class 2, or 0.707 (or -3 decibels) below for denominator class 2
 - At the break point, $|j\omega\tau + 1|^{\pm 1} = |j+1|^{\pm 1} = \sqrt{2}^{\pm 1}$
 - Phase:
 - * Below the break point, the phase is $\angle 1 = 0^{\circ}$
 - * Above the break point, the phase is $\angle (j\omega\tau)^{\pm 1} = \pm 90^{\circ}$
 - * At the break point, the phase is $\angle (j+1)^{\pm 1} = \pm 45^{\circ}$

Figure 1: Magnitude plot of $(j\omega)^n$.

- $\ast\,$ The middle asymptote intersects the lower and upper asymptotes at 5 times above and below the break point
- * At the intersection of asymptotes, the actual phase deviates from the asymptotes by about $\angle (j/5+1)^{\pm}1 = \pm 11^{\circ}$
- For very low frequencies, class 2 gives a gain of 1 and phase of 0, so it has no effect on the Bode plot of the composite function
 - * Rule of thumb is to ignore for ω a factor of 10 or more below the break point

Figure 2: Magnitude plot of $(j\omega\tau + 1)$ for $\tau = 10$.

• Class 3:
$$\left(\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta\left(\frac{j\omega}{\omega_n}\right) + 1\right)^{\pm 1}$$

- The break point is $\omega = \omega_n$
- For $\omega \ll \omega_n$, $\left(\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta\left(\frac{j\omega}{\omega_n}\right) + 1\right)^{\pm 1} \approx 1$
- For $\omega \gg \omega_n$, $\left(\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta\left(\frac{j\omega}{\omega_n}\right) + 1\right)^{\pm 1} \approx \left(\frac{j\omega}{\omega_n}\right)^{\pm 2}$
- Magnitude:

- * For $\omega \ll \omega_n$ the gain is again approximately 1
- * For $\omega \gg \omega_n$ the gain behaves like a class 1 term of $\frac{1}{\omega_n^{\pm 2}} (j\omega)^{\pm 2}$

Figure 3: Phase plot of $(j\omega\tau + 1)$ for $\tau = 10$.

- The slope is a constant ± 2 (or ± 40 decibels per decade)
- * The transition between the two asymptotes depends on ζ
 - At the break point, the magnitude is a factor of $(2\zeta)^{\pm 1}$ above/below a gain of 1 For $\omega = \omega_n$, $(j^2 + 2\zeta + 1)^{\pm 1} = (2\zeta)^{\pm 1}$
 - For a power of +1 the magnitude goes down at the break point, while for -1 the magnitude goes up
- * The peak has a magnitude of $\frac{1}{2\zeta\sqrt{1-\zeta^2}}$ and occurs at $\omega_r = \omega_n\sqrt{1-2\zeta^2}$ This can be obtained by differentiating the expression for the magnitude

 - For values of $\zeta > \frac{1}{\sqrt{2}}$, the resonant peak does not exist
- The smaller ζ is, the closer the peak is to ω_n and the larger the magnitude of the peak - Phase:
 - * For $\omega \ll \omega_n$, $\angle 1 = 0^\circ$
 - * For $\omega \gg \omega_n$, $\angle (j\omega)^{\pm 2} = \pm 180^\circ$
 - * For $\omega \approx \omega_n$, $\angle (\pm j 2\zeta) = \pm 90^{\circ}$
 - * The smaller the ζ , the faster the phase will transition between 0° and $\pm 180^{\circ}$
 - For $\zeta = 0$, the transition is essentially a step function and the change is an instantaneous iump
 - For $\zeta = 1$, we just have a multiplication of two class 2 terms with the same break point
- Process for plotting a composite Bode plot:
 - 1. Manipulate the transfer function into Bode form to identify all break point frequencies
 - 2. Plot the low-frequency asymptote: Determine the value of n for the class 1 term and plot its magnitude as a line with slope of n passing through K_0 at $\omega = 1$
 - 3. Draw the asymptotes for the magnitude plot: Extend the low-frequency asymptote until the next break point, then change the slope by ± 1 or ± 2 depending on the class of the break point and whether it is numerator or denominator; repeat until all break points are accounted for
 - 4. Correct the magnitude values at break points:
 - For class 2, increase the magnitude by a factor of 1.41 (numerator) or decrease by a factor of 0.707 (denominator)
 - For class 3, change by a factor of (2ζ) (numerator) or a factor of $\frac{1}{2\zeta}$ (denominator)
 - Note these values may change of break points are close together; if break points are less than a factor of 10 away, the break point offsets are inaccurate
 - 5. Plot the low-frequency asymptote of the phase curve: $\phi = n \cdot 90^{\circ}$
 - 6. Draw the horizontal asymptotes for phase: Change the value of the phase asymptote by $\pm 90^{\circ}$ for class 2 break points and $\pm 180^{\circ}$ for class 3 break points for each break point in ascending order
 - 7. Determine intermediate asymptotes for each break point

- 8. Add each phase curve together graphically
- Example: $G(s) = \frac{2000(s+0.5)}{s(s+10)(s+50)}$ $G(s) = 2s^{-1} \frac{\left(\frac{s}{0.5}+1\right)}{\left(\frac{s}{10}+1\right)\left(\frac{s}{50}+1\right)}$ Class 1: $2(j\omega)^{-1}$ - Class 2: $\left(\frac{j\omega}{0.5}+1\right)$ with break point 0.5, $\left(\frac{j\omega}{10}+1\right)^{-1}$ with break point 10, $\left(\frac{j\omega}{50}+1\right)^{-1}$ with break point 5

- Steps:

1. Bode form:
$$2(j\omega)^{-1} \frac{\left(\frac{j\omega}{0.5}+1\right)}{\left(\frac{j\omega}{10}+1\right)\left(\frac{j\omega}{50}+1\right)}$$

- 2. From the class 1 term: At $\omega = 1$, the gain is 2; the slope is -1
- 3. Continue the slope of -1 until the first break point 0.5, then increase slope by 1 (to 0); next break point is at 10, decrease slope by 1 (to -1); next break point is at 50, decrease slope by 1 (to -2)
- 4. Increase magnitude by a factor of 1.41 at break point 0.5; decrease by a factor of 0.707 at break point 10; decrease by a factor of 0.707 at break point 50
- 5. Low-frequency phase asymptote: $\phi = -90^{\circ}$
- 6. Increase phase by 90° at $\omega = 0.5$ (to 0°), decrease by 90° at 10 (to -90°), decrease by another 90° at 50 (to -180°)
- 7. Draw the phase curves for the individual terms
- 8. Graphically add the individual phase curves to obtain the final phase plot

Figure 6: Magnitude plot of $G(s) = \frac{2000(s+0.5)}{s(s+10)(s+50)}$.

- Example: $G(s) = \frac{10}{s(s^2 + 0.4s + 4)}$ 1. Bode form: $G(j\omega) = 2.5(j\omega)^{-1} \frac{1}{\left(\left(\frac{j\omega}{2}\right)^2 + 2(0.1)\left(\frac{j\omega}{2}\right) + 1\right)}$
 - 2. Class 1 term: $2.5(j\omega)^{-1}$
 - First asymptote with slope of -1 having a value of 2.5 at $\omega = 1$ 3. Class 3 term: $\omega_n = 2$ and $\zeta = 0.1$, denominator

Figure 7: Phase plot of $G(s) = \frac{2000(s+0.5)}{s(s+10)(s+50)}$.

- Decrease the asymptote slope by 2 at $\omega = 2$ 4. Increase magnitude by a factor of $\frac{1}{2(0.1)} = 5$ at the break point, and plot the magnitude

- 5. Low-frequency asymptote at $\phi = -90^{\circ}$
- 6. Decrease phase by -180° at $\omega = 2$ (to -270°)
- 7. Draw the phase plot

Figure 8: Magnitude plot of $G(s) = \frac{10}{s(s^2 + 0.4s + 4)}$.

