Lecture 22, Mar 28, 2024

Frequency Response Design Method

- For a (stable) LTI system G(s), the steady-state response to an input $u(t) = A \sin(\omega_0 t) \mathbf{1}(t)$ is given by $y_{ss}(t) = A|G(j\omega_0)|\sin(\omega_0 t + \angle G(j\omega_0))$
 - The response is a sinusoid of the same frequency, scaled by a factor of $|G(i\omega_0)|$ (the magnitude of the transfer function, known as the *gain* or *amplitude/magnitude ratio*), with a phase shift of $\angle G(j\omega_0)$ (the phase of the transfer function)
 - Knowing the magnitude $M(\omega)$ and phase $\phi(\omega)$ of $G(j\omega)$ for all possible frequencies ω fully specifies the transfer function
- In general, the complete response is the sum of a number of exponentials and a sinusoid; since the system is stable, all the exponentials decay to 0 as $t \to \infty$ and we are only left with the sinusoid
- Example: RC circuit, output y(t) is the voltage across the capacitor, input $\mathcal{K}u(t)$ is an input voltage that is sinusoidal
- $-RC\frac{\mathrm{d}y}{\mathrm{d}t} + y(t) + \mathcal{K}u(t) \implies \frac{\mathrm{d}y}{\mathrm{d}t} + ky(t) = u(t) \text{ where } k = \frac{1}{RC}, \text{ assuming } \mathcal{K} = RC$ $-G(s) = \frac{1}{s+k}$ - Given $u(t) = \sin(10t)1(t), U(s) = \frac{10}{s^2 + 100}$ - At s = j10, $|G(j10)| = \frac{1}{\sqrt{1^2 + 10^2}}$ and $\angle G(j10) = -\tan^{-1}\left(\frac{10}{1}\right)$ - Therefore the response is $y(t) = \frac{1}{\sqrt{101}} \sin(10t - \tan^{-1}(10))$ • Example: lead network $D_c(s) = K \frac{T_s + 1}{\alpha T_s + 1}$ for $\alpha < 1$ - Note that this is mathematically identical to the form of the lead compensator we had before, but
 - - this form is more common and convenient for frequency response design * The zero is at $\frac{1}{T}$, the pole at $\frac{1}{\alpha T}$ and the gain is $\frac{K}{\alpha}$

- Frequency response:
$$D_c(j\omega) = K \frac{I_j\omega + 1}{\alpha T j\omega + 1}$$

- Gain: $M = |K| \frac{\sqrt{1 + \omega^2 T^2}}{\sqrt{1 + \alpha^2 \omega^2 T^2}}$

- Phase:
$$\phi = \tan^{-1}(\omega T) - \tan^{-1}(\alpha \omega T)$$

- For
$$\omega \to 0$$
, we have $M \to |K|$ and $\phi \to 0$
- For $\omega \to \infty$ we have $M \to \left|\frac{K}{\alpha}\right|$ and $\phi \to 0$

- The gain and phase for a range of values of ω can be summarized in a *Bode plot*
 - The top plot is the magnitude plot; the bottom plot is the phase plot
 - The bode plot is log-log for magnitude and semi-log for phase
 - * Using a log-log plot for gain allows us to cover a wide range of ω and gain, and also allows us to simply add up the magnitude plots of transfer functions to get the final plot, since multiplication of gains is just addition of logs
 - The vertical axis of the magnitude plot often uses decibels, $dB = 20 \log |G(j\omega)|$
- Note in MATLAB, bode(sys, w) gives [mag, phase], which we can plot to get the Bode plot
 - Use logspace() to get the points for w

System Behaviour From Frequency Response

- The gain and phase of the system's frequency response completely determines the behaviour of the system; we design using it just like we design using the root locus
 - The root locus is to the root locus design method as the Bode plot is to the frequency design method

Figure 1: Bode magnitude and phase plots for the lead compensator, for $K = 1, \alpha = 0.1, T = 1$.

- Typical closed-loop systems exhibit a low-pass filter behaviour
 - The gain is close to 1 at lower frequencies, i.e. the output follows the input well
 - Beyond a certain frequency, the gain deviates from 1; for most systems, it increases first before decreasing
 - For most systems when the frequency gets very large the gain approaches 0, i.e. the output stops following the input at all
- The bandwidth ω_{BW} is defined as the highest frequency ω where the output still tracks the (sinusoidal) input in a satisfactory manner
 - Traditionally we define this to be when the gain hits $\sqrt{2}/2 = 0.707$
 - This is known as the *half-power point*; if the gain is a voltage gain, then at this point, the power of the response will be only half
 - A higher bandwidth means a faster response the larger ω_{BW} is, the larger ω_n is and the shorter our rise and peak times
- The resonant peak M_r is the maximum value of the amplitude ratio
 - M_r has a direct relationship with ζ , so we can estimate the damping and overshoot of the system from M_r
- When we design a controller, we examine its bode plot and tune the gains to get the desired bandwidth and resonant peak, just like we identify pole locations on a root locus

Figure 2: Definitions of bandwidth and resonant peak.