Lecture 20, Mar 21, 2024

Example: 1-DoF Satellite Attitude Control (Continued)

o Consider the case of collocated control (01), with the previous lead compensator at z = 1,p = 12
s+1  (s+01)>+6>
s+1252((s+0.1)2 +6.62)
— The flexible mode adds two additional branches, but since it also has two zeros, the two new
branches go to the new zeros
— Even though the 2 new poles are closer to the imaginary axis and have less damping, because they
are very close to zeros, they are mostly cancelled out
— Therefore the response of the system is still mostly dominated by the same two poles as in the
double-integrator case
* The actual response will exhibit very small oscillations (added to the normal response) caused
by the flexible modes
¢ Since these are almost undamped, they will stay for a very long time
* If the gain is very large, the dominating poles are now on the asymptote
— Overall, the single flexible mode brings lightly damped roots
e Note that in the above we assumed that the open-loop zeroes are the same as the closed-loop zeros,
which is only true when we have a unity feedback system

— The characteristic equation is 1 + K

Root Locus, some poles/zeros are repeated
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Figure 1: Root locus plot of the collocated case.

« In the non-collocated case (O3), we are missing the two zeros
— Because we don’t have the zeros, the new branches now go to infinity instead of their zeros; the
asymptotes make the poles go into the RHP, introducing instability

— These poles are still barely in the LHP, so the system can still be stable for some gain values, but
it is now unstable for larger gains

— Furthermore these poles are no longer cancelled out by zeros, so they will dominate the system
and introduce very high overshoot

— This is why the non-collocated system is much harder to control

Design for Dynamic Compensation

_|_
o Lead compensator: D.(s) = KS_'_—Z where z < p
sTp

— For a sinusoidal input, its output leads the input (output phase shift is positive)
— Note that due to causality, the output doesn’t start earlier than the input; but with a sustained
sinusoidal input, the phase shift gradually approaches positive



Root Locus, some poles/zeros are repeated
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Figure 2: Root locus plot of the non-collocated case.

— This comes at a cost of some amplitude
— Approximates PD control; speeds up response (lowering rise time) and decreases overshoot

o Lag compensator: D.(s) = Ksiiz where z > p
sTp

— For a sinusoidal input, the output lags the input (negative phase shift)
— The amplitude of the output is now larger than the input
— Approximates PI control, decreasing steady-state error
82 4+ 2Cwos + Wi
(s 4+ wp)?
— Attenuates the input around some unwanted frequency, acting as a band-stop filter
— Enhances stability for plants with lightly damped flexible modes (cancels them out)
— Typically has two complex zeros, which can capture problematic poles
* Also has two real poles, but typically wyg is large, so they are far out in the LHP and usually
has little effect

Note that all 3 compensator do not have any poles at the origin, so the type of the plant is unchanged
by adding a compensator

Notch compensator: D.(s) = K

1
 Consider the example plant G(s) = ——, e.g. a servo mechanism
s(s+1)
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Figure 3: Root locus plots for a P (solid line) and PD (dashed line) controller.

e Example: lead compensation
— We typically start with the simplest possible controller first
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Figure 4: Root locus plots for different lead compensator gains.

— Consider P control: D.(s) = K
* Since the asymptote is close to the imaginary axis, the damping is very low
* If we want a certain w,, for a certain rise time, we will have a large overshoot
* eg forw, =2 = (=025
— Now consider PD control: D.(s) = K(s+2)
* Now for the same value of w,,, our poles will be on the circle, and ( is significantly larger,
improving damping without sacrificing speed
* eg forw, =2 = (=0.75
s+2
s+p
As we’ve seen previously, depending on the location of the pole relative to the zero, we can
get very different behaviour
For small K, the lead compensator approximates PD control well, regardless of where the pole
is
* For large p, the lead compensator also behaves like PD control
The additional pole slightly lowers damping (for the same w,, we see that ¢ is smaller)
o This effect is negligible for low K and large p
Typically, we place the zero near the desired closed-loop w,, (0.25 to 1 times w,,) and the pole
5 to 25 times the value of the zero
e The further p is, the closer we get to PD; we get slightly better performance, but noise
will increase

— Now the lead compensator D.(s) = K
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