
Lecture 20, Mar 21, 2024
Example: 1-DoF Satellite Attitude Control (Continued)

• Consider the case of collocated control (Θ1), with the previous lead compensator at z = 1, p = 12

– The characteristic equation is 1 + K
s + 1
s + 12

(s + 0.1)2 + 62

s2((s + 0.1)2 + 6.62) = 0

– The flexible mode adds two additional branches, but since it also has two zeros, the two new
branches go to the new zeros

– Even though the 2 new poles are closer to the imaginary axis and have less damping, because they
are very close to zeros, they are mostly cancelled out

– Therefore the response of the system is still mostly dominated by the same two poles as in the
double-integrator case

* The actual response will exhibit very small oscillations (added to the normal response) caused
by the flexible modes
• Since these are almost undamped, they will stay for a very long time

* If the gain is very large, the dominating poles are now on the asymptote
– Overall, the single flexible mode brings lightly damped roots

• Note that in the above we assumed that the open-loop zeroes are the same as the closed-loop zeros,
which is only true when we have a unity feedback system

Figure 1: Root locus plot of the collocated case.

• In the non-collocated case (Θ2), we are missing the two zeros
– Because we don’t have the zeros, the new branches now go to infinity instead of their zeros; the

asymptotes make the poles go into the RHP, introducing instability
– These poles are still barely in the LHP, so the system can still be stable for some gain values, but

it is now unstable for larger gains
– Furthermore these poles are no longer cancelled out by zeros, so they will dominate the system

and introduce very high overshoot
– This is why the non-collocated system is much harder to control

Design for Dynamic Compensation

• Lead compensator: Dc(s) = K
s + z

s + p
where z < p

– For a sinusoidal input, its output leads the input (output phase shift is positive)
– Note that due to causality, the output doesn’t start earlier than the input; but with a sustained

sinusoidal input, the phase shift gradually approaches positive
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Figure 2: Root locus plot of the non-collocated case.

– This comes at a cost of some amplitude
– Approximates PD control; speeds up response (lowering rise time) and decreases overshoot

• Lag compensator: Dc(s) = K
s + z

s + p
where z > p

– For a sinusoidal input, the output lags the input (negative phase shift)
– The amplitude of the output is now larger than the input
– Approximates PI control, decreasing steady-state error

• Notch compensator: Dc(s) = K
s2 + 2ζω0s + ω2

0
(s + ω0)2

– Attenuates the input around some unwanted frequency, acting as a band-stop filter
– Enhances stability for plants with lightly damped flexible modes (cancels them out)
– Typically has two complex zeros, which can capture problematic poles

* Also has two real poles, but typically ω0 is large, so they are far out in the LHP and usually
has little effect

• Note that all 3 compensator do not have any poles at the origin, so the type of the plant is unchanged
by adding a compensator

• Consider the example plant G(s) = 1
s(s + 1) , e.g. a servo mechanism

Figure 3: Root locus plots for a P (solid line) and PD (dashed line) controller.

• Example: lead compensation
– We typically start with the simplest possible controller first
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Figure 4: Root locus plots for different lead compensator gains.

– Consider P control: Dc(s) = K
* Since the asymptote is close to the imaginary axis, the damping is very low
* If we want a certain ωn for a certain rise time, we will have a large overshoot
* e.g. for ωn = 2 =⇒ ζ = 0.25

– Now consider PD control: Dc(s) = K(s + 2)
* Now for the same value of ωn, our poles will be on the circle, and ζ is significantly larger,

improving damping without sacrificing speed
* e.g. for ωn = 2 =⇒ ζ = 0.75

– Now the lead compensator Dc(s) = K
s + 2
s + p

* As we’ve seen previously, depending on the location of the pole relative to the zero, we can
get very different behaviour

* For small K, the lead compensator approximates PD control well, regardless of where the pole
is

* For large p, the lead compensator also behaves like PD control
* The additional pole slightly lowers damping (for the same ωn we see that ζ is smaller)

• This effect is negligible for low K and large p
* Typically, we place the zero near the desired closed-loop ωn (0.25 to 1 times ωn) and the pole

5 to 25 times the value of the zero
• The further p is, the closer we get to PD; we get slightly better performance, but noise

will increase
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