
Lecture 19, Mar 18, 2024
Gain Selection from Root Locus

• Once we found a point on the root locus, s0, that meets our requirements, we can find its value of K

• Since L(s) = − 1
K

is the condition for the locus, K = 1
|L(s)| =

|
∏n

i=1(s0 − pi)|
|
∏m

i=1(s0 − zi)|
=

∏n
i=1|s0 − pi|∏m
i=1|s0 − zi|

– These magnitudes of the difference of s0 from the poles and zeros can be obtained geometrically
by measuring the distance of s from the roots and zeroes

• Once we have K, we can now solve for the values of s that make L(s) = − 1
K

to find all the roots of
the closed-loop system (since we only get one root initially)

• To identify s0 = −σ + jω given ζ:
– We know ω

σ
= tan(sin−1 ζ)

– Substitute s0 into L(s) = − 1
K

and solve for the value of K

– This will give us two equations, one for the real part (containing K), and another one for the
imaginary part (which should equal 0)

– Using the relation between σ and ω we can solve for their values using the imaginary equation
– Substitute these values back into the real equation to solve for K

Example: 1-DoF Satellite Attitude Control
• Consider planar angular control of a satellite with a thruster generating a force Fc, and a disturbance

MD causing an unwanted moment
• TC + MD = FCd + MD = Iθ̈ where d is the distance from the centre of mass to the thruster and I is

the satellite’s moment of inertia
• Transfer function: assume MD = 0, so Θ(s)

TC(s) = G(s) = 1
Is2 = A

s2

– This a double-integrator
• Now consider an instrument attached to the satellite via a flexible boom, which can bend and vibrate

– The total system has two degrees of freedom, the rotation of the satellite and the rotation of the
instrument boom

– The boom is modelled as a (rotational) spring-dashpot system between two discs
– Bottom disc (attached to satellite): TC = I1θ̈1 + b(θ̇1 − θ̇2) + k(θ1 − θ2)
– Top disc (attached to instrument): 0 = I2θ̈2 + b(θ̇1 − θ̇1) + k(θ2 − θ1)
– We will simplify the system and assume b = 0

• Laplace transform:
– TC = (I1s2 + k)Θ1(s) − kΘ2(s)
– 0 = −kΘ1(s) + (I2s2 + k)Θ2(s)

• For this system, we can have two cases: either we want to control the attitude of the satellite, or the
attitude of the instrument

– Θ1(s)
TC(s) = I2s2 + k

I1I2s2
(

s2 + k
I1

+ k
I2

)
* Here we are controlling the side attached to the satellite
* This is the case of collocated control: both the actuator and the sensor dynamics are on one

body
– Θ2(s)

TC(s) = k

I1I2s2
(

s2 + k
I1

+ k
I2

)
* Here we are controlling the instrument boom
* This is the non-collocated case: the actuator and sensor are not on the body we want to

control
– Notice that the collocated case has 2 zeros, which the non-collocated case misses – we will later

see that the zeros in the first case make the control a lot simpler
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• Consider a proportional controller Dc(s) = kP to control only the satellite without the boom, Θ
TC

= A

s2

– Closed loop TF:
kP

1
s2

1 + kP
1
s2

with characteristic equation 1 + kP
1
s2 = 0

– This is already in root locus form; L(s) = 1
s2 =⇒ b(s) = 1, a(s) = s2

– Root locus determination:
1. Two branches, both starting at s = 0, both going to infinity since there are no open-loop zeros
2. No segments on the real axis; since both open-loop poles are at s = 0, for s < 0 we are on the

left of 2 poles, and for s > 0 we are on the left of none
3. Two asymptotes, intersecting at α = 0 and at angles ±90°
4. Branches have departure angles from s = 0 of ±90° (one goes up, one goes down)

– Notice that now all poles are on the imaginary axis – no matter what we do, we get oscillations
with no damping

Figure 1: Root locus when using a proportional controller.

• Now consider using a PD controller Dc(s) = kP + kDs

– Closed loop TF:
(kP + kDs) 1

s2

1 + (kP + kDs) 1
s2

with characteristic equation 1 + (kP + kDs) 1
s2 = 0

– Assume kD = K and kP

kD
= 1, the characteristic equation is 1 + K

s + 1
s2 = 0

* The derivative gain introduced an open-loop zero to the system
– Root locus:

1. Two branches, both starting at s = 0, one of them going to the zero at s = −1, and the other
going to ∞

2. On the real axis, everywhere to the left of s = −1 is a part of the root locus, since that is to
the left of 2 poles and 1 zero

3. One asymptote along the negative real axis
4. Departure angles from double pole at s = 0 are ±90°
5. Two branches on the real axis meet at ±90°
6. Break-in point at s = −2

– Notice that the additional zeros has “pulled” the root locus to the left, adding damping and
allowing us to have a response that does not oscillate forever

• However, in the real world any controller using a derivative gain is non-casual; implementing it in
software will greatly amplify the noise in the system

– To remedy this, we can try to add a denominator to the controller to make it casual
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Figure 2: Root locus for the PD controller.

– We add a factor in the denominator of s

p
+ 1

* If we choose p to be large, this will have little effect on the system response, but we can make
the system causal and practically workable

* We make the order of the denominator as small as possible to reduce sluggishness
• PD controller with lead compensator : Dc(s) = kP + kDs

s
p + 1

– Dc(s) = kP + pkP s

s + p
= (kP + pkD)s + kP p

s + p
=

(kP + pkD)
(

s + kP p
kP +pkD

)
s + p

– Let kP + pkD = K and kP p

kP + pkD
so Dc(s) = K

s + z

s + p
* With the large p, the pole it introduces is very far in the negative real axis, so it has a very

small effect on the overall system
– Characteristic equation: 1 + Dc(s)G(s) = 1 + K

s + z

s2(s + p) = 0

– Consider the following cases of p and z:
* z = 1 and p = 12:

• Root locus determination:
1. 3 branches, two starting at s = 0, one starting at s = −12, one branch ends at s = −1,

two at infinity
2. Real axis −12 ≤ s ≤ −1 is on the locus
3. 2 asymptotes centered at −11

2 at angles ±90°
4. Departure angles at s = 0 are ±90°, at s = −12 is 0°
5. Break-in point at angle of ±90°
6. Break-in point at s = −2.3 for the two branches starting at s = 0; two other branches

depart at s = −5.2
• We see that the root locus is close to that of just a PD controller

* z = 1 and p = 4:
• Now the root locus branches are pushed to the right, causing oscillatory responses
• The pole being much closer means that it now starts to matter

* z = 1 and p = 9:
• For this in-between value we see that the new pole does impact the root locus, but the

impact is smaller
* As the pole gets closer to the zero, the branches begin to merge together
* The pole should always be placed as far away as possible from the zero, but this has tradeoffs
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Figure 3: Root locus for the lead compensator, for z = 1, p = 12.

Figure 4: Root locus for the lead compensator, for z = 1, p = 4.

Figure 5: Root locus for the lead compensator, for z = 1, p = 9.
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