Lecture 19, Mar 18, 2024

Gain Selection from Root Locus

- Once we found a point on the root locus, s_0 , that meets our requirements, we can find its value of K
- Since $L(s) = -\frac{1}{K}$ is the condition for the locus, $K = \frac{1}{|L(s)|} = \frac{|\prod_{i=1}^{n}(s_0 p_i)|}{|\prod_{i=1}^{m}(s_0 z_i)|} = \frac{\prod_{i=1}^{n}|s_0 p_i|}{\prod_{i=1}^{m}|s_0 z_i|}$ These magnitudes of the difference of s_0 from the poles and zeros can be obtained geometrically
 - by measuring the distance of s from the roots and zeroes
- Once we have K, we can now solve for the values of s that make $L(s) = -\frac{1}{K}$ to find all the roots of the closed-loop system (since we only get one root initially)
- To identify $s_0 = -\sigma + j\omega$ given ζ : We know $\frac{\omega}{\sigma} = \tan(\sin^{-1}\zeta)$

 - Substitute s_0 into $L(s) = -\frac{1}{K}$ and solve for the value of K
 - This will give us two equations, one for the real part (containing K), and another one for the imaginary part (which should equal 0)
 - Using the relation between σ and ω we can solve for their values using the imaginary equation
 - Substitute these values back into the real equation to solve for K

Example: 1-DoF Satellite Attitude Control

- Consider planar angular control of a satellite with a thruster generating a force F_c , and a disturbance M_D causing an unwanted moment
- $T_C + M_D = F_C d + M_D = I\ddot{\theta}$ where d is the distance from the centre of mass to the thruster and I is the satellite's moment of inertia
- Transfer function: assume $M_D = 0$, so $\frac{\Theta(s)}{T_C(s)} = G(s) = \frac{1}{Is^2} = \frac{A}{s^2}$

– This a double-integrator

- Now consider an instrument attached to the satellite via a flexible boom, which can bend and vibrate
 - The total system has two degrees of freedom, the rotation of the satellite and the rotation of the instrument boom
 - The boom is modelled as a (rotational) spring-dashpot system between two discs
 - Bottom disc (attached to satellite): $T_C = I_1 \dot{\theta}_1 + b(\dot{\theta}_1 \dot{\theta}_2) + k(\theta_1 \theta_2)$
 - Top disc (attached to instrument): $0 = I_2 \ddot{\theta}_2 + b(\dot{\theta}_1 \dot{\theta}_1) + k(\theta_2 \theta_1)$
 - We will simplify the system and assume b = 0
- Laplace transform:

$$-T_C = (I_1 s^2 + k)\Theta_1(s) - k\Theta_2(s)$$

$$-0 = -k\Theta_1(s) + (I_2s^2 + k)\Theta_2(s)$$

• For this system, we can have two cases: either we want to control the attitude of the satellite, or the attitude of the instrument

$$- \frac{\Theta_1(s)}{T_C(s)} = \frac{I_2 s^2 + k}{I_1 I_2 s^2 \left(s^2 + \frac{k}{I_1} + \frac{k}{I_2}\right)}$$

- * Here we are controlling the side attached to the satellite
- * This is the case of *collocated control*: both the actuator and the sensor dynamics are on one body

$$-\frac{\Theta_2(s)}{T_C(s)} = \frac{k}{I_1 I_2 s^2 \left(s^2 + \frac{k}{I_1} + \frac{k}{I_2}\right)}$$

- * Here we are controlling the instrument boom
- * This is the *non-collocated* case: the actuator and sensor are not on the body we want to control
- Notice that the collocated case has 2 zeros, which the non-collocated case misses we will later see that the zeros in the first case make the control a lot simpler

- Consider a proportional controller $D_c(s) = k_P$ to control only the satellite without the boom, $\frac{\Theta}{T_C} = \frac{A}{s^2}$
 - Closed loop TF: $\frac{k_P \frac{1}{s^2}}{1 + k_P \frac{1}{s^2}}$ with characteristic equation $1 + k_P \frac{1}{s^2} = 0$
 - This is already in root locus form; $L(s) = \frac{1}{s^2} \implies b(s) = 1, a(s) = s^2$
 - Root locus determination:
 - 1. Two branches, both starting at s = 0, both going to infinity since there are no open-loop zeros
 - 2. No segments on the real axis; since both open-loop poles are at s = 0, for s < 0 we are on the left of 2 poles, and for s > 0 we are on the left of none
 - 3. Two asymptotes, intersecting at $\alpha = 0$ and at angles $\pm 90^{\circ}$
 - 4. Branches have departure angles from s = 0 of $\pm 90^{\circ}$ (one goes up, one goes down)
 - Notice that now all poles are on the imaginary axis no matter what we do, we get oscillations with no damping

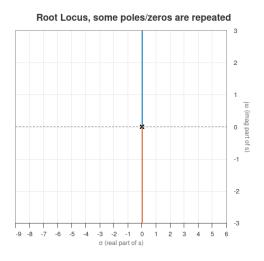


Figure 1: Root locus when using a proportional controller.

- Now consider using a PD controller $D_c(s) = k_P + k_D s$
 - Closed loop TF: $\frac{(k_P + k_D s)\frac{1}{s^2}}{1 + (k_P + k_D s)\frac{1}{s^2}}$ with characteristic equation $1 + (k_P + k_D s)\frac{1}{s^2} = 0$
 - Assume $k_D = K$ and $\frac{k_P}{k_D} = 1$, the characteristic equation is $1 + K \frac{s+1}{s^2} = 0$
 - $\ast\,$ The derivative gain introduced an open-loop zero to the system
 - Root locus:
 - 1. Two branches, both starting at s = 0, one of them going to the zero at s = -1, and the other going to ∞
 - 2. On the real axis, everywhere to the left of s = -1 is a part of the root locus, since that is to the left of 2 poles and 1 zero
 - 3. One asymptote along the negative real axis
 - 4. Departure angles from double pole at s = 0 are $\pm 90^{\circ}$
 - 5. Two branches on the real axis meet at $\pm 90^{\circ}$
 - 6. Break-in point at s = -2
 - Notice that the additional zeros has "pulled" the root locus to the left, adding damping and allowing us to have a response that does not oscillate forever
- However, in the real world any controller using a derivative gain is non-casual; implementing it in software will greatly amplify the noise in the system
 - To remedy this, we can try to add a denominator to the controller to make it casual

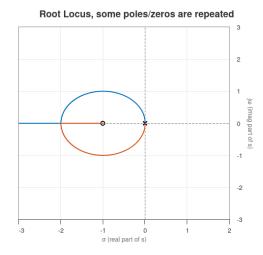


Figure 2: Root locus for the PD controller.

- We add a factor in the denominator of $\frac{s}{-} + 1$
 - * If we choose p to be large, this will have little effect on the system response, but we can make the system causal and practically workable
 - * We make the order of the denominator as small as possible to reduce sluggishness
- PD controller with *lead compensator*: $D_c(s) = k_P + \frac{k_D s}{\frac{s}{2} + 1}$

$$- D_{c}(s) = k_{P} + \frac{pk_{P}s}{s+p} = \frac{(k_{P} + pk_{D})s + k_{P}p}{s+p} = \frac{(k_{P} + pk_{D})\left(s + \frac{k_{P}p}{k_{P} + pk_{D}}\right)}{s+p}$$

- Let $k_{P} + pk_{D} = K$ and $\frac{k_{P}p}{s+p}$ so $D_{c}(s) = K\frac{s+z}{s+p}$

* With the large p, the pole it introduces is very far in the negative real axis, so it has a very small effect on the overall system

- Characteristic equation:
$$1 + D_c(s)G(s) = 1 + K \frac{s+z}{s^2(s+p)} = 0$$

- Consider the following cases of p and z:
 - * z = 1 and p = 12:
 - Root locus determination:
 - 1. 3 branches, two starting at s = 0, one starting at s = -12, one branch ends at s = -1, two at infinity
 - 2. Real axis $-12 \le s \le -1$ is on the locus 3. 2 asymptotes centered at $-\frac{11}{2}$ at angles $\pm 90^{\circ}$
 - 4. Departure angles at s = 0 are $\pm 90^{\circ}$, at s = -12 is 0°
 - 5. Break-in point at angle of $\pm 90^{\circ}$
 - 6. Break-in point at s = -2.3 for the two branches starting at s = 0; two other branches depart at s = -5.2
 - We see that the root locus is close to that of just a PD controller
 - * z = 1 and p = 4:
 - Now the root locus branches are pushed to the right, causing oscillatory responses
 - The pole being much closer means that it now starts to matter
 - * z = 1 and p = 9:
 - For this in-between value we see that the new pole does impact the root locus, but the impact is smaller
 - * As the pole gets closer to the zero, the branches begin to merge together
 - * The pole should always be placed as far away as possible from the zero, but this has tradeoffs

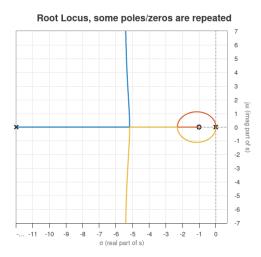


Figure 3: Root locus for the lead compensator, for z = 1, p = 12.

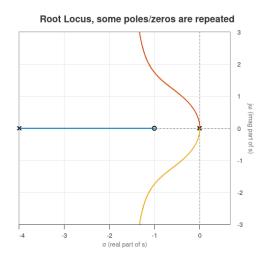


Figure 4: Root locus for the lead compensator, for z = 1, p = 4.

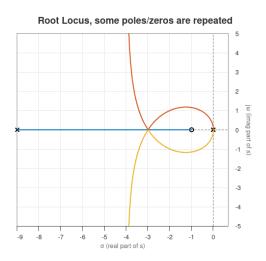


Figure 5: Root locus for the lead compensator, for z = 1, p = 9.