Lecture 19, Mar 18, 2024

Gain Selection from Root Locus

e Once we found a point on the root locus, sg, that meets our requirements, we can find its value of K
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— These magnitudes of the difference of sy from the poles and zeros can be obtained geometrically
by measuring the distance of s from the roots and zeroes
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o Since L(s) = e is the condition for the locus, K

o Once we have K, we can now solve for the values of s that make L(s) = 7% to find all the roots of

the closed-loop system (since we only get one root initially)
e To identify s = —0 + jw given (:
w
~ We know — = tan(sin~' ()
o

1
— Substitute sg into L(s) = e and solve for the value of K

— This will give us two equations, one for the real part (containing K), and another one for the
imaginary part (which should equal 0)

— Using the relation between ¢ and w we can solve for their values using the imaginary equation

— Substitute these values back into the real equation to solve for K

Example: 1-DoF Satellite Attitude Control

e Consider planar angular control of a satellite with a thruster generating a force F., and a disturbance
Mp causing an unwanted moment

e Teo+ Mp = Fod+ Mp = I8 where d is the distance from the centre of mass to the thruster and I is
the satellite’s moment of inertia
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e Transfer function: assume Mp = 0, so (5) =G(s)=— ==
Is2 52

— This a double-integrator
e Now consider an instrument attached to the satellite via a flexible boom, which can bend and vibrate
— The total system has two degrees of freedom, the rotation of the satellite and the rotation of the
instrument boom
— The boom is modelled as a (rotational) spring-dashpot system between two discs
~ Bottom disc (attached to satellite): T = I16; + b(6y — 62) + k(6 — 65)
— Top disc (attached to instrument): 0 = Ipfy + b(6; — 61) + k(6 — 61)
— We will simplify the system and assume b =0
e Laplace transform:
- Tc = (1182 + k)@l(s) — k‘@g(s)
- 0= —k@l(S) + (1252 + k)@g(s)
e For this system, we can have two cases: either we want to control the attitude of the satellite, or the

attitude of the instrument
©1(s) Is?+ k

TC(S) 11I282 (82 + % + %)
* Here we are controlling the side attached to the satellite
* This is the case of collocated control: both the actuator and the sensor dynamics are on one
body
Oa(s) k
To(s)  [1,s? (52 +4£ 4 %)
* Here we are controlling the instrument boom
* This is the non-collocated case: the actuator and sensor are not on the body we want to
control

— Notice that the collocated case has 2 zeros, which the non-collocated case misses — we will later
see that the zeros in the first case make the control a lot simpler




(C) A
o Consider a proportional controller D.(s) = kp to control only the satellite without the boom, — = -
C S
kpds . . . 1
— Closed loop TF: ——*—- with characteristic equation 1 +kp— =0
1
— This is already in root locus form; L(s) = — == b(s) = 1,a(s) = 5
s

Root locus determination:
1. Two branches, both starting at s = 0, both going to infinity since there are no open-loop zeros
2. No segments on the real axis; since both open-loop poles are at s = 0, for s < 0 we are on the
left of 2 poles, and for s > 0 we are on the left of none
3. Two asymptotes, intersecting at « = 0 and at angles £90°
4. Branches have departure angles from s = 0 of £90° (one goes up, one goes down)
— Notice that now all poles are on the imaginary axis — no matter what we do, we get oscillations
with no damping

Root Locus, some poles/zeros are repeated
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Figure 1: Root locus when using a proportional controller.

o Now consider using a PD controller D.(s) = kp + kps
(kp =+ kDS)Siz
1+ (kp + kDS)Siz

1
with characteristic equation 1+ (kp + kps)— =0

— Closed loop TF: 5
S

k 1
— Assume kp = K and -F - 1, the characteristic equation is 1 + KS el

52 0
* The derivative gain introduced an open-loop zero to the system
— Root locus:
1. Two branches, both starting at s = 0, one of them going to the zero at s = —1, and the other
going to oo
2. On the real axis, everywhere to the left of s = —1 is a part of the root locus, since that is to

the left of 2 poles and 1 zero
One asymptote along the negative real axis
Departure angles from double pole at s = 0 are +£90°
Two branches on the real axis meet at +90°
6. Break-in point at s = —2
— Notice that the additional zeros has “pulled” the root locus to the left, adding damping and
allowing us to have a response that does not oscillate forever

CU

e However, in the real world any controller using a derivative gain is non-casual; implementing it in
software will greatly amplify the noise in the system
— To remedy this, we can try to add a denominator to the controller to make it casual



Root Locus, some poles/zeros are repeated
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Figure 2: Root locus for the PD controller.

— We add a factor in the denominator of s +1

p
* If we choose p to be large, this will have little effect on the system response, but we can make
the system causal and practically workable
* We make the order of the denominator as small as possible to reduce sluggishness

k
o PD controller with lead compensator: D(s) = kp + —?-Sl
P
k
- D (3) =kp+ pkps _ (k’P +pk‘D)S+k‘pp _ (k‘p —|—ka) (3_|_ kpfpka>
S o TP - s+p
P S+ z
— Let kp + pk :KandLSODcs =K
P T PRD kP +pk;D ( ) st+p

* With the large p, the pole it introduces is very far in the negative real axis, so it has a very

small effect on the overall system
Characteristic equation: 1+ D.(s)G(s) =1+ K;i =0
s?(s +p)

— Consider the following cases of p and z:
*z=1land p=12:
¢ Root locus determination:
1. 3 branches, two starting at s = 0, one starting at s = —12, one branch ends at s = —1,
two at infinity
Real axis —12 < s < —1 is on the locus

11
2 asymptotes centered at -5 at angles +90°

Departure angles at s = 0 are £90°, at s = —12 is 0°
Break-in point at angle of +90°
Break-in point at s = —2.3 for the two branches starting at s = 0; two other branches
depart at s = —5.2
o We see that the root locus is close to that of just a PD controller
z=1and p=4:
e Now the root locus branches are pushed to the right, causing oscillatory responses
¢ The pole being much closer means that it now starts to matter
z=1and p=09:
o For this in-between value we see that the new pole does impact the root locus, but the
impact is smaller
* As the pole gets closer to the zero, the branches begin to merge together
* The pole should always be placed as far away as possible from the zero, but this has tradeoffs

S o W
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*
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Figure 3: Root locus for the lead compensator, for z = 1,p = 12.
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Figure 4: Root locus for the lead compensator, for z = 1,p = 4.

Root Locus, some poles/zeros are repeated
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Figure 5: Root locus for the lead compensator, for z=1,p = 9.
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