
Lecture 17, Mar 11, 2024
Root-Locus Design Method

• A graphical method (set of rules) for finding the locus (set of locations on a line) of the roots of a
system’s characteristic equation, as a result of changing parameters

– Allows us to find how the roots of a system move as a result of variation in some system parameter
– e.g. we can find how the poles move as a result of changing the gain, so we can assess the system’s

stability, speed, etc
– The root locus is the set of all locations that a root can take as a result of changing some parameter
– Note the parameter must affect the characteristic equation linearly

• In controls, we use this to find how the roots of the characteristic equation (i.e. the poles) are affected
by changing system gains

• Consider the closed-loop transfer function Y (s)
R(s) = T (s) = Dc(s)G(s)

1 + Dc(s)G(s)H(s)
– Rewrite the characteristic equation into the form of 1 + Dc(s)G(s)H(s) = a(s) + Kb(s) = 0

– Then we have 1 + K
b(s)
a(s) = 0 =⇒ 1 + KL(s) = 0 where L(s) = b(s)

a(s) = −1 1
K

* Writing L(s) = b(s)
a(s) is known as the root-locus or Evans form

– Now our poles are locations where L(s) = − 1
K

, which is often a negative real number
– Since the original poles are at Dc(s)G(s)H(s) = −1, KL(s) = Dc(s)G(s)H(s), the open-loop

transfer function
* Sometimes we will just refer to the open-loop transfer function as L(s) and ignore the K

– Most often K is a positive real number since it is a gain, but in rare cases we can also deal with
K < 0

• The roots of the characteristic equation are located where the open-loop transfer function of the system
becomes a real negative value

– Therefore we can plot the location of all possible roots s of the characteristic equation by varying
K; this is the root locus

– The root locus allows us to select the best controller gains and study the effect of potentially
adding additional poles and zeros

• Let b(s) = sm + b1sm−1 + · · · + bm =
m∏

i=1
(s − zi), a(s) = sn + a1sn−1 + · · · + an =

n∏
i=1

(s − pi)

– zi are the open-loop zeroes, pi are the open-loop poles
– Note n ≥ m because L(s) ∝ Dc(s)G(s)H(s) is causal

• Let a(s) + Kb(s) =
n∏

i=1
(s − ri) (note n ≥ m so the summation ends at n)

– The ri are the closed-loop poles; note this is not the same as the open-loop poles
– Our goal is to draw all the possible locations of ri for different values of K

• Example: Dc(s) = K, G(s) = 1
s(s + c) and consider c = 1; plot the root locus with respect to K

– G(s)Dc(s) = K

s2 + s
=⇒ T (s) = K

(s2 + s) + K
= K

a(s) + Kb(s)

– We have b(s) = 1, a(s) = s2 + s =⇒ m = 0, n = 2, zi = ∅, pi = { 0, −1 } , ri = −1
2 ±

√
1 − 4K

2
– L(s) = b(s)

a(s) = 1
s(s + 1)

– For K = 0, we have two real roots r1 = −1, r2 = 0
* Notice that these are the same as the open-loop poles, since K = 0 =⇒ a(s) + Kb(s) = a(s)

– For K = 1
4, r1 = r2 = −1

2
– For K >

1
4 the roots will be imaginary, and the pair of poles will move up further from the real
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axis
– The two directions that the poles move in are the 2 branches

* The branches start at the open loop poles, which are the start points
* The locus has one breakaway point, where the two poles join and separate

• Note breakaway points are when the poles move in from the real axis
– Suppose we want ζ = 0.5, geometrically we can draw out a line at an angle sin−1 ζ = 30° from the

origin, and find where it intersects with the root locus

Figure 1: Example feedback control system.

Figure 2: Root locus plot of the example system.

• Example: root locus of the previous system with respect to c

– T (s) = 1
s2 + 1 + cs

= 1
a(s) + cb(s) =⇒

{
b(s) = s

a(s) = s2 + 1
, L(s) = s

s2 + 1
– The roots are zi = 0, pi = ±j

– a(s) + cb(s) = s2 + cs + 1 = 0 =⇒ r1, r2 = − c

2 ±
√

c2 − 4
2

– For c = 0 we have r1, r2 = ±j, giving the start of the plot
– For c = 2 the two roots meet at r1 = r2 = −1
– As c → ∞, one of the poles moves to −∞ while the other converges to 0
– The circle on the diagram indicates the location of z1 = 0
– This root locus has 2 start points, 2 branches, and 1 break-in point (where the poles meet and

separate, but they come from the imaginary axis)

Root Locus Determination
Definition

A root locus is the set of all possible values of s for which the characteristic equation 1 + KL(s) = 0
holds, as the real parameter K varies from 0 to ∞ (sometimes −∞). In controls, the characteristic
equation is typically for a closed-loop system, so the roots of the locus are the system poles.
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Figure 3: Root locus plot with respect to c for the example system.

• If K is real and positive, then L(s) must be real and negative, so its phase must be +180° (positive
locus)

– In rare cases K is negative, then L(s) has a phase of 0 (negative locus)
• We can alternatively define the root locus as the set of points in the s-plane where the phase of L(s)

equals 180° for positive loci, or 0° for negative loci
– This will help us plot the locus

• Recall that for L(s) = b(s)
a(s) the phase of L(s) is equal to the phase of b(s) minus the phase of a(s)

• Consider a test point s0
– To find the phase of L(s0), we need to find the phase of b(s0) and a(s0)

– ∠b(s) =
m∑

i=1
∠(s0 − zi) and ∠a(s) =

n∑
i=1

∠(s0 − pi)

– We need to check that
m∑

i=1
∠(s0 − zi) −

n∑
i=1

∠(s0 − pi) = 180° + 360°(l − 1)

– The phase of each s0 − zi is the angle from each open-loop zero to s0; the phase of each s0 − pi is
the angle from each open-loop pole to s0

– Therefore we take the sum of the angles of s0 from the open-loop zeros, denoted ϕi, and subtract
the sums of the angles of s0 from the open-loop poles, denoted ϕi

Figure 4: Testing whether a point s0 is part of the root locus.
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