
Lecture 16, Mar 7, 2024
PID Controllers, Continued
Ziegler-Nichols Tuning Method

• While we can find gain values through theoretical analysis of a system, we don’t often know the transfer
functions perfectly, so fine-tuning on top of theoretical gains is often needed

• For PID tuning, we rely on mostly heuristic methods (instead of rigorous theoretical methods)
• For a PID controller, do the following in order:

– Use kP to decrease the rise time
– Use kD to reduce the overshoot and settling time
– Use kI to eliminate the steady-state error (while keeping the system stable)

Figure 1: Effect of increasing each of the PID gains.

Figure 2: Process reaction curve.

Figure 3: Ziegler-Nichols table.

• The Ziegler-Nichols method is an empirical tuning method that gives a set of gains from empirical
observations of the system only
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– This works well for plants that don’t have poles at the origin, or dominant complex poles near the
origin

* This is because these plants are stable, and oscillatory components of the response are not
dominant

– The plant’s behaviour should be well approximated by Y (s)
U(s) = Ae−tds

τs + 1
* The e−tds is a delay by td

* This is saying that the step response first has some delay L = td , and then rises with an
approximate slope R = A

τ
until it reaches the DC gain of A

* This is known as a process reaction curve and is characterized by L and R
• Given a plant, we can inject it with a step input and measure its response and derive L and R

– The Ziegler-Nichols method gives a set of PID gains based on L and R only

– The gains of a PID controller Dcl(s) = kP

(
1 + 1

TIs
+ TDs

)
can be looked up in the table

• This method doesn’t apply for all plants, especially not those that are unstable
• Theoretically, we can show that Ziegler-Nichols creates a system response with 25% decay ratio (ratio

of the first overshoot to the second overshoot), about equivalent to ζ ≈ 0.21 for a second-order system
– This damping ratio leads to around 50% overshoot
– We can usually reduce kP by 50% after tuning to reduce overshoot/oscillations without affecting

the other properties much
• The method was first derived purely empirically, but it can be shown that the resulting gain values are

close to those derived from optimal control, where we minimize the energy of the controller
• If it’s impractical to observe the system’s step response (e.g. unstable system), we can instead use the

ultimate sensitivity method
1. Close the loop with only a proportional controller with gain kP , so the system is stable
2. Increase kP until the system enters a steady oscillation in response to a step input

– The gain at which this happens is the ultimate gain Ku, and the oscillation period is the
ultimate period Pu

3. Look up values for the system gains based on the ultimate gain and ultimate period from the table
– Again we can often reduce kP by half to reduce oscillations

Figure 4: Ziegler-Nichols table for ultimate sensitivity.

• Example: heat exchanger; we control a valve which varies the amount of steam into the tank, which
adjusts the temperature of the water at the tank exit

– Typical fluids systems are similar to underdamped second-order systems

– Assume Tm = Tw(t − td) (a delay) so Tm(s)
As(s) = Ke−tds

(τ1s + 1)(τ2s + 1)
* as(t) is the amount that we open the valve by

– Assume that we give a step input to the plant and its output is shown in the figure below
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* L ≈ 13 (very short delay)
* R ≈ 1

90
• If we take the tangent when the response is increasing, it takes about 90 seconds to hit 1

* For P control we have kP = 1
RL

= 6.92

* For PI control kP = 0.9
RL

= 6.22, TI = L

0.3 = 43.3
– Assume that we use a P controller and increased the gain until we saw steady oscillations in the

figure below
* Ku ≈ 15.3, Pu ≈ 42
* For P control kP = 0.5Ku = 7.65
* For PI control kP = 0.45Ku, TI = Pu

1.2 = 35.0
* Notice that the PI controller gains derived from this method resulted in a response with more

oscillation

Figure 5: Step response of the example plant.

Figure 6: Closed-loop step responses from the controller using the step response method, before and after
reducing kP .

Feedforward Control

• Using only P doesn’t eliminate steady-state error, but using PI to eliminate the error makes the system
sluggish, decreases damping and degrades stability

• Another way to eliminate steady-state error is to use a feedforward controller, where we first multiply
the reference by the inverse DC gain of the plant
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Figure 7: Steady oscillation of the example plant from a P controller.

Figure 8: Closed-loop step responses from the controller using ultimate sensitivity, before and after reducing
kP .

4



– Equivalent to having (G−1(s) + Dc(s))Ea(s) instead of just Dc(s)Ea(s) to the plant

– Y (s) = G(s)(Dc(s)E(s)G−1(0)R(s)) =⇒ Y (s)
R(s) = (Dc(s) + G−1(0))G(s)

1 + Dc(s)G(s)

– Now when we take s → 0 we get a DC gain of Dc(0)G(s) + G−1(0)G(0)
1 + Dc(0)G(0) = 1, so there is no

steady-state error
• Practically we don’t always know G−1(0) exactly, which is why we still need a P/PI controller; the

system with just a feedforward is not robust

Figure 9: Feedforward controllers for tracking and disturbance rejection.
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