
Lecture 15, Mar 4, 2024
PID Controllers

• For the following analyses we will assume unity feedback, but this is easily extended to other kinds of
feedback

Proportional Control (P)

• The simplest controller simply applies a gain to the error feedback: u(t) = kP ea(t) =⇒ Dcl = kP

• Consider a second order plant G(s) = Kω2
n

s2 + 2ζωns + ω2
n

=⇒ GDcl(s) = kP Kω2
n

s2 + 2ζωns + ω2
n

– No poles at the origin in the open-loop transfer function, therefore this is a type 0 system

• Closed loop transfer function: Y (s)
R(s) = GDcl(s)

1 + GDcl(s) = kP Kω2
n

s2 + 2ζωns + (1 + kP K)ω2
n

– Notice that the new natural frequency is ω′
n =

√
1 + kP Kω2

n, which is increased
– The new damping ratio is ζ ′ = ζ√

1 + kP K
, which is decreased (obtained by comparing 2ζ ′ω′

n with

2ζωn)
– Increased natural frequency leads to shorter rise time (faster system), but decreased damping leads

to more overshoot
• For R(s) = 1

s
, we have ess = lim

s→0
s

1
1 + GDcl

1
s

= 1
1 + kP K

– The steady-state error in the step response is reduced, but not eliminated entirely
• The same analysis can be made for the disturbance regulation

Integral Control (I)

• The integral controller applies u(t) = kI

� t

0
ea(τ) dτ

– Instead of the error itself, the control signal is proportional to the area underneath the error curve
• The controller transfer function is U(s)

Ea(s) = Dcl(s) = kI

s

• Consider the same second-order plant G(s) = Kω2
n

s2 + 2ζωns + ω2
n

:

• Closed loop transfer function: Y (s)
R(s) = kIG(s)

s + kIG(s) = kIKω2
n

s3 + 2ζωns2 + ω2
ns + kIKω2

n

= T (s)

– Notice that this system is now third order; the increased order of the system makes it more sluggish,
so the rise time increases and overshoot decreases

– Taking s → 0 we see that the DC gain is 1, so there is no more steady-state error
– Unlike the second-order system, we can no longer conclude that the system is always stable, since

this is a third-order system
– Using the Routh criterion, we find that kI <

2ζωn

K
is the maximum value of kI for the system to

be stable
* The integral controller can destabilize the system!

– The removal of steady-state error is a robust property, holding regardless of the value of kI and
plant parameters

* We can find the sensitivity transfer function and show that this always goes to 0 as s → 0

• GDcl(s) = kIKω2
n

s(s2 + 2ζωns + ω2
n) ; Ecl(s) = 1

1 + GDcl
R(s)

– There is one pole at the origin, so this is a type 1 system
– This can now follow a position setpoint with no error, and a velocity setpoint with constant error
– Note we only get zero error for position setpoints when we have unity feedback!
– The velocity constant is Kv = lim

s→0
sGDcl(s) = kIK =⇒ ess = 1

kIK

1



Derivative Control (D)

• The derivative controller applies u(t) = kD ėa(t) =⇒ U(s)
Ea(s) = Dcl(s) = kDs

– Derivative control tends to speed up the system, since it anticipates future behaviour of the system

• The closed-loop transfer function is kDKω2
ns

s2 + (2ζ + kDKωn)ωns + ω2
n

for the second-order plant

– The additional zero speeds up the system and increases the overshoot
– However, the damping ratio is increased to ζ ′ = ζ + 1

2kDKωn, which decreases the overshoot
– Overall, the combination leads to increased system speed and decreased overshoot
– Furthermore, increased damping ratio and constant natural frequency moves the poles away from

the imaginary axis, enhancing stability

• GDcl(s) = kDKω2
ns

s2 + 2ζωns + ω2
n

– No poles at zero, therefore the system is type 0 and maintains constant error for a step input
– The position constant is Kp = lim

s→0
GDcl(s) = 0

– The steady state error is ess = 1
1 + Kp

= 1

* This means that the output ultimately converges to zero, i.e. the derivative controller can’t do
anything about the steady state error

• Generally, derivative control enhances the transient behaviour of the system but does nothing to its
long-term behaviour

• The transfer function for the controller is not causal
– This means we can’t implement it with analog controllers
– We can still implement this digitally, but taking numerical derivatives highly amplifies noise
– Therefore, in reality derivative controllers may not be practical
– Practically, we use another technique called lead functions instead of derivatives

• Derivative control can be used to damp the control response, so we don’t get sharp reactions to suddenly
changing signals

– If there is a sudden jump in the output due to transient effects, there will be a jump in error and
also u(t), which is not desirable

– A derivative feedback path will correct for this

Proportional-Integral Control (PI)

• u(t) = kP ea(t) + kI

� t

0
ea(τ) dτ =⇒ Dcl(s) = kP + kI

s

• The closed-loop transfer function is (kP s + kI)Kω2
n

s3 + 2ζωns2 + (1 + kP K)ω2
ns + kIKω2

n
– We still increase the system order, but also added a zero, which counteracts the slowdown effect

* The final system can be faster than the initial plant
– There is a zero that we can use to cancel a stable pole, which would make the system behave like

second-order, making it easier to analyze and control

• GDcl(s) = (kP s + kI)Kω2
n

s(s2 + 2ζωns + ω2
n)

– The system is type 1, with Kv = kIK and steady-state error ess = 1
kIK

– Also type 1 in regulation
• Stability criterion: kI <

2ζωn(1 + kP K)
K

• Note that we only have two adjustable parameters kP and kI , but there are 3 roots, so our ability to
control the characteristic equation is limit

• Generally used to allow for a faster response compared to a pure integral controller

2



Proportional-Derivative-Integral Control (PID)

• u(t) = kP ea(t) + kI

� t

0
ea(τ) dτ + kD ėa(t) =⇒ Dcl(s) = kP + kI

s
+ kDs

• Second-order closed loop: (kDs2 + kP s + kI)Kω2
n

s3 + (2ζ + kDKωn)ωns2 + (1 + kP K)ω2
ns + kIKω2

n
– We can fully control the location of the poles since there are 3 poles and we have 3 parameters

• GDcl(s) = (kDs2 + kP s + kI)Kω2
n

s(s2 + 2ζωns + ω2
n)

– The system is type 1, and has kv = kIK =⇒ ess = 1
kIK

• Stability criterion: kI <
(2ζ + kDKωn)(1 + kP K)ωn

K

Example System: DC Servo Motor
• Consider the DC motor system derived earlier
• la

dia

dt
+ raia = va − Keθ̇m =⇒ (las + ra)Ia(s) = Va(s) − Kesθm(s)

– This models the back EMF and inductive/resistive effects of the motor coil
• Jmθ̈m + bmθ̇m = Ktia − ηT =⇒ (Jms + bm)sΘm(s) = KtIa(s) − ηT (s)

– This models torque on the shaft, including friction and an external resisting force
• Va(s) is the input to the system, T (s) is a disturbance, and Θm(s) is the final output

– Va(s) first passes through a transfer function to get Ia(s), then this is multiplied by Kt to get a
torque

– This is summed with the torque from the disturbance and passes through the mechanical transfer
function to get θ̇m

– A final integrator gets us Θm(s)
– The back EMF introduces a feedback path with constant gain Ke

Figure 1: Block diagram for the DC motor system.

• The system has two inputs (Va and T ), since it is linear we can consider one at a time to get transfer
functions

– Θm(s)
Va(s) = Kt

s((las + ra)(Jms + bm) + KcKt)

– Θm(s)
T (s) = −η(las + ra)

s((las + ra)(Jms + bm) + KeKt)
• We can again make the simplifying assumption that the electrical part of the system operates on a

much faster time scale than the mechanical part, so the inductance la can be taken to 0

– Θm(s)
Va(s) =

Kt

ra

s
(

Jms +
(

bm + KeKt

ra

)) = K

s(τs + 1)

3



– Θm(s)
T (s) = −η

s
(

Jms +
(

bm + KeKt

ra

)) = C

s(τs + 1)

– τ = Jmra

bmra + KeKt

– K = Kt

bmra + KeKt

– C = −ηra

bmra + KeKt
– We can now build a much simpler block diagram

Figure 2: Simplified block diagram for the DC motor system.

• Now we close the loop, with a feedback transfer function H(s) = hs and controller Dcl(s)
– We can do this for either a position or velocity controller
– Since we have non-unity feedback, we can no longer only look at the poles to tell the system type

and must use brute force
• For position control: Θm(s)

Θmr(s) = KDcl(s)
s(τs + 1) + KhDc(s) , Θm(s)

T (s) = −Kη

s(τs + 1) + KhDc(s)
– Consider a PID controller: Dcl(s) = kP + kI

s
+ kDs

– T (s) = Θm(s)
Θmr(s) =

KkP + KkI

s + KkDs

τs2 + s + KhkP + KhkI

s + KhkDs
=

1
τ (KkDs2 + KkP s + KkI)

s3 + 1
τ (KhkD + 1)s2 + 1

τ KhkP s + 1
τ KhkI

– Tw(s) = Θm(s)
Ts(s) = −Kη

τs2 + s + KhkP + KhkI

s + KhkDs
=

− 1
τ Kηs

s3 + 1
τ (KhkD + 1)s2 + 1

τ KhkP s + 1
τ KhkI

• For tracking: E(s) = Θmr(s) − Θm(s)
= (1 − T (s))Θmr(s)

=
(

s3 1
τ (KhkD + 1)s2 + 1

τ KhkP s + 1
τ KhkI − 1

τ KkDs2 − 1
τ KkP s − 1

τ KkI

s3 + 1
τ (KhkD + 1)s2 + 1

τ KhkP s + 1
τ KhkI

)
Θmr(s)

– For a step Θmr(s) = 1
s

, so ess = lim
s→0

sE(s) =
1
τ KkI(h − 1)

1
τ KhkI

= h − 1
h

– We have a constant error, so this system is only type 0
– Even though we have an integral term, the error was not reduced to 0 because the system is not

unity feedback
* If the system was unity feedback, then h = 0 and we would have a type 1 system

• For regulation: E(s) = Θmr(s) − Θm(s)
= −Θm(s)
= −TwT (s)

– For a step disturbance T (s) = 1
s

* ess = lim
s→0

sE(s) = lim
s→0

−Tw(s) = 0
* This system is higher than type 0

– For a ramp disturbance T (s) = 1
s2

4



* ess = lim
s→0

−sTw(s) =
1
τ Kη

1
τ KhkI

= η

hkI

* Therefore this system is type 1 with respect to regulation
* The velocity constant is 1

ess
= hKI

η
• In summary, the system is type 0 with respect to tracking and type 1 with respect to regulation for PID

– For PI, we have the same type 0 in tracking and type 1 in regulation
– For P, we have type 0 in both regulation and tracking

• The same analysis can be applied for velocity control, where our feedback will be taken from Ωm(s),
the speed of the shaft

– Construct the same transfer functions for regulation and tracking
– For velocity control, we also have the same types with the controllers

• In general, for PI and PID control the system type is usually the same

5


	Lecture 15, Mar 4, 2024
	PID Controllers
	Proportional Control (P)
	Integral Control (I)
	Derivative Control (D)
	Proportional-Integral Control (PI)
	Proportional-Derivative-Integral Control (PID)

	Example System: DC Servo Motor


