Lecture 15, Mar 4, 2024
PID Controllers

e For the following analyses we will assume unity feedback, but this is easily extended to other kinds of
feedback

Proportional Control (P)

o The simplest controller simply applies a gain to the error feedback: u(t) = kpe,(t) = D = kp
Kuw? kpKuw?
¢ Consider a second order plant G(S) = m — GD(J(S) = m
— No poles at the origin in the open-loop transfer function, therefore this is a type 0 system
. Y(s) GD.(s) kpKw?
e Closed 1 t fer function: = = n
osed loop transfer function R(s) ~ 14 GDals) ~ 52 % %oms + (1 + hpK)w2

— Notice that the new natural frequency is w/, = /1 4+ kp Kw?, which is increased

— The new damping ratio is ¢’ = , which is decreased (obtained by comparing 2¢’w!, with

¢
V1+kpK
2Cwy)

— Increased natural frequency leads to shorter rise time (faster system), but decreased damping leads
to more overshoot

1 1
For R(s) = —, we have eg, = lim s - =
() S’W Ve s s—0 14+ GDg s 1+kpK
— The steady-state error in the step response is reduced, but not eliminated entirely

e The same analysis can be made for the disturbance regulation

Integral Control (I)

t
o The integral controller applies u(t) = kr / eq(T)dr

0
— Instead of the error itself, the control signal is proportional to the area underneath the error curve

U k
e The controller transfer function is (5) = Dy(s) = L
E.(s) s
Consider the sa d-order plant G(s) Kw,
o Consider same second-order plan = 2"t .
onsider the same second-order p s T 2o T
Y k krKw?
o Closed loop transfer function: (s) _ _RiGls) 12 %n =T(s)

R(s) s+kiG(s) $342Cw,s®+w2s+ ki Kw2

— Notice that this system is now third order; the increased order of the system makes it more sluggish,

so the rise time increases and overshoot decreases
— Taking s — 0 we see that the DC gain is 1, so there is no more steady-state error
— Unlike the second-order system, we can no longer conclude that the system is always stable, since

this is a third-order system

2Cwn
K

— Using the Routh criterion, we find that k; <

be stable
* The integral controller can destabilize the system!
— The removal of steady-state error is a robust property, holding regardless of the value of k; and
plant parameters
* We can find tI;e sensitivity transfer function and show that this always goes to 0 as s — 0
]C[Kwn . - 1
* GDals) = 5(s2 + 2¢wps + w?)’ Ea(s) = 1+ GD, R(s)
— There is one pole at the origin, so this is a type 1 system
— This can now follow a position setpoint with no error, and a velocity setpoint with constant error
— Note we only get zero error for position setpoints when we have unity feedback!

is the maximum value of k; for the system to

— The velocity constant is K, = lim sGD(s) = k1K = egs = ——
s—0 k[K



Derivative Control (D)

U(s
o The derivative controller applies u(t) = kpé,(t) = z (( )) = D.(s) = kps
(s
— Derivative control tends to speed up the system, since it anticipates future behaviour of the system
kpKw?s

e The closed-loop transfer function is 5 for the second-order plant

s2 4+ (2¢ + kpKwp)wn s + w2
— The additional zero speeds up the system and increases the overshoot

1
— However, the damping ratio is increased to ¢/ = ¢ + =kpKw,, which decreases the overshoot

Overall, the combination leads to increased system speed and decreased overshoot
— Furthermore, increased damping ratio and constant natural frequency moves the poles away from
the imaginary axzis, enhancing stability
« GDy(s) = %
52 4 2Cwp s + w2
— No poles at zero, therefore the system is type 0 and maintains constant error for a step input
— The position constant is K, = 213(1) GD.(s) =0

— The steady state error is egs = =1
y SSs 1 + Kp

* This means that the output ultimately converges to zero, i.e. the derivative controller can’t do
anything about the steady state error
e Generally, derivative control enhances the transient behaviour of the system but does nothing to its
long-term behaviour
e The transfer function for the controller is not causal
— This means we can’t implement it with analog controllers
— We can still implement this digitally, but taking numerical derivatives highly amplifies noise
— Therefore, in reality derivative controllers may not be practical
— Practically, we use another technique called lead functions instead of derivatives
e Derivative control can be used to damp the control response, so we don’t get sharp reactions to suddenly
changing signals
— If there is a sudden jump in the output due to transient effects, there will be a jump in error and
also u(t), which is not desirable
— A derivative feedback path will correct for this

Proportional-Integral Control (PI)

t
k
o u(t) = kpeg(t) +k1/ eo(T)dr = Dy(s) =kp + —
0 S
(kps+ kr)Kw?
s34+ 2Cwps? + (1 + kpK)w2s + ky Kw?2
— We still increase the system order, but also added a zero, which counteracts the slowdown effect
* The final system can be faster than the initial plant
— There is a zero that we can use to cancel a stable pole, which would make the system behave like
second-order, making it easier to analyze and control
(kps + ki) Kw?
[ GDC = n
1(s) 8(8? + 2Cwns + w2)
1

— The system is type 1, with K,, = k; K and steady-state error ez = e
1

o The closed-loop transfer function is

— Also type 1 in regulation

2Cwn(1+kpK
o Stability criterion: ky < M

e Note that we only have two adjustable parameters kp and kj, but there are 3 roots, so our ability to
control the characteristic equation is limit
e Generally used to allow for a faster response compared to a pure integral controller



Proportional-Derivative-Integral Control (PID)

t
k
. U(t):k’Pea(t)+k]/ ea(T)dT+kDéa(t) E Dcl(s):kP+?I+kDS
0

(kps® + kps+ k) Kw?

34+ (2¢+ kpKwp)wns? + (1 + kpK)w2s + kr Kw2
— We can fully control the location of the poles since there are 3 poles and we have 3 parameters

e Second-order closed loop:

kps? +k kr)Kw?
o GDy(s) = ( D82+ petb) an
s(8? + 2Cwp s + w?)
1
— The system is type 1, and has k, = kj K — ez =
kr K

(QC + kDKwn)(l + ka)wn
K

e Stability criterion: kj <

Example System: DC Servo Motor

e Consider the DC motor system derived earlier
di

. lad—; F 1ol = Vg — Kebp = (los +714)10(8) = Vo(s) — Kc80m(9)
— This models the back EMF and inductive/resistive effects of the motor coil
o b 4 b = Kiig — T = (Jns + b)) 5O (s) = KiIo(s) — nT(s)
— This models torque on the shaft, including friction and an external resisting force
o Va(s) is the input to the system, T'(s) is a disturbance, and ©,,(s) is the final output
— Va(s) first passes through a transfer function to get I,(s), then this is multiplied by K; to get a
torque
— This is summed with the torque from the disturbance and passes through the mechanical transfer
function to get 6,y
— A final integrator gets us ©,,(s)
— The back EMF introduces a feedback path with constant gain K,

2 —
IS +b, S

+ l,s+r,

Figure 1: Block diagram for the DC motor system.

e The system has two inputs (V,, and T), since it is linear we can consider one at a time to get transfer

functions
B @m(S) - Kt
Va(s)  5((las 4+ 7a)(Jms + bm) + K. K)
~ On(s) —1(las +7a)

T(s)  5((las +70)(Jms + b)) + K Ky)
e« We can again make the simplifying assumption that the electrical part of the system operates on a
much faster time scale than the mechanical part, so the inductance [, can be taken to 0

O,n(s) o K

Va(s) (Fms + (b + 552 T Srst 1)




~ Oml(s) —n C

I@s) s (Jms + (bm + %)) s(rs+1)
ImTa
B bmra + KeKt
_ t
B bmra + KeKt
—NTq
bmra + K(’Kt
— We can now build a much simpler block diagram

! ©,(s)
Va(S) Kx bi m
. —> Jms+(bm+KeKt/)'-’ P

Figure 2: Simplified block diagram for the DC motor system.

o Now we close the loop, with a feedback transfer function H(s) = hs and controller D(s)
— We can do this for either a position or velocity controller
— Since we have non-unity feedback, we can no longer only look at the poles to tell the system type

and must use bruée fE)r)ce KDu(s) On(s) K
« For positi trol: —m2L — . = S
or position contro Omr(s) ~ s(rs 1)+ KhDo(s)’ T(s) s(ts+ 1)+ KhD.(s)

k
— Consider a PID controller: D (s) = kp + ?I +kps

sy = Oml8) _ Kkp + 55 4+ Kkps 3 1(Kkps® + Kkps + Kkr)
© Ome(s) 782+ s+ Khkp + B8 4 Khkps 83+ 2(Khkp 4+ 1)s2 + LKhkps + LKhk;
C) -K —-1iK
- TUJ(S) = m(S) = n — T ns

Ti(s) 78>+ s+ Khkp+ 52 4 Khkps 83+ 2(Khkp +1)s? + 1 Khkps + 2 Khk;
o For tracking: E(s) = O,,,-(s) — O (8)
= (1 =7(s))Omr(s)
_ (8°1(Khkp +1)s* + 1 Khkps + 1 Khk; — 1Kkps® — 1 Kkps — 1Kk; Omr(3)
- 3+ %(thp +1)s2 + %thps + %thf i

1

— For a step O,-(s) = é, SO €55 = glg(l) sE(s) = TK;II((:I@I D = h W !

— We have a constant error, so this system is only type 0

— Even though we have an integral term, the error was not reduced to 0 because the system is not

unity feedback
* If the system was unity feedback, then h = 0 and we would have a type 1 system
o For regulation: E(s) = ©,,,-(5) — O (s)
= —Om(s)

= —T,T(s)

1
— For a step disturbance T'(s) = —

* egs = lim sE(s) = lim —T,(s) =0
s—0 s—0
* This system is higher than type 0

— For a ramp disturbance T'(s) = —
s



1
. Kn
* e = iy —oTu(s) = 13 ;

IKhk;  hkr
* Therefore this system is type 1 with respect to regulation
hK;

* The velocity constant is — =
eSS 77
e In summary, the system is type 0 with respect to tracking and type 1 with respect to regulation for PID

— For PI, we have the same type 0 in tracking and type 1 in regulation
— For P, we have type 0 in both regulation and tracking
o The same analysis can be applied for velocity control, where our feedback will be taken from ,,(s),
the speed of the shaft
— Construct the same transfer functions for regulation and tracking
— For velocity control, we also have the same types with the controllers
o In general, for PI and PID control the system type is usually the same
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