Lecture 14, Feb 29, 2024

Control System Type

+ The reference input R(s) can often be approximated by a time domain polynomial r(t) = Ct*1(t)
— e.g. for position k = 0, for velocity kK = 1 and for acceleration k = 2
e The type of a closed-loop controller is the maximum order of the polynomial that the controller can
follow with a constant error
— e.g. if the system can follow a ramp with constant error, then it is a type 1 system
— Any inputs of a higher order will lead to increasing error
— Any inputs of a lower order will lead to zero error
o For unity feedback (i.e. H(s) = 1 or perfect sensors) and no disturbance (W =V = 0), the type of a
system depends on the number of poles that its open loop transfer function, HGD., = GD,;, has at
the origin
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o Therefore for a step input we get a constant steady state error
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e For any higher degree input, the error goes to infinity

— Now consider GD(s) = GD ( )
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* GD.(s) contains all terms of GD.(s) except for poles at the origin, so K,, = GD.(0) is a
finite value
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e The type of a system is a robust property, i.e. it is independent of the parameters of the system
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o For a type 0 system, we can define a position constant, K, = Ko = lim GD(s), 80 e5s = ————
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(known as the position error constant)
— Note that this is the only one where the error constant is not a simple reciprocal
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e For a type 1 system, we can define a velocity constant, K, = K, = lir% SGD¢(s), 80 €55 = e
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e For a type 2 system, we can define an acceleration constant, K, = Ko = liH(lJ S2GDcl(3), SO €55 = i
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o Example: plant G(s) = 1 with controller D(s) = kp + 71
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~ GDgy(s) = so this is a type 1 system
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— The velocity constant is K, = lin% sGD.(s) = Ak so the steady-state error is ——
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o For non-unity feedback, E.(s) = R(s) — Yy (s) = R=(1-T(s))R(s)
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— We have to explicitly check the type by finding the largest value of k£ that keeps ey, finite
— However, the relationship between the position/velocity /acceleration constants and the steady
state error still holds

Typing a system can also be done with respect to regulation, i.e. setting R = V = 0 and finding
the highest order of disturbance W that leads to a finite steady state error; in this case the type is

determined by the number of zeroes in the error transfer function
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* Note the negative sign in the definition, so that Y (s) = Ty, (s)W(s)
— The type is the number of zeroes of T, (s) at the origin (instead of poles!)
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Generally, the type of a system with respect to tracking can be different than the type with respect to
regulation, so we must specify when stating the type
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o We can also define a transfer function in terms of the noise, Vi) = —H(s)T(s) = Ty(s), assuming
S
R=W=0
— For the noise however the use of a polynomial input is less realistic, since noise is usually very
high in frequency

— Now we can see that m >k = yss >0, m<k = yss >0 and m =k = yss =
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