
Lecture 13, Feb 27, 2024
Control System Performance

• In open-loop control, we control the plant without using feedback from its output
• For open-loop control, Yol = GDolR + GW

– Eol = R − Yol = (1 − GDol)R − GW
– Assuming no disturbance so W (s) = 0, we can define the open-loop transfer function

– Tol(s) = Y (s)
R(s) = G(s)Dol(s)

Figure 1: Closed-loop control.

• For closed-loop control, Ycl = T R + GSW − HT V
– Ecl = R − Ycl = (1 − T )R − GSW + HT V

* Notice the negative sign in front of the W term, since the output is subtracted from reference
– In this case, V (s) is noise in our sensor measurements, which we separate from W (s)

* W (s) is usually low-frequency
* V (s) is usually high-frequency

– Since we have an LTI system, we can consider the input and sources of noise separately
* Assuming W (s) = V (s) = 0 we can define the closed-loop transfer function

• T (s) = Y (s)
R(s) = G(s)Dcl(s)

1 + H(s)G(s)Dcl(s) = Tcl(s)

* Assuming R(s) = V (s) = 0 we can define the transfer function for process noise

• Y (s)
W (s) = G(s) · 1

1 + H(s)G(s)Dcl(s) = G(s)S(s)

• Recall that S(s) is the sensitivity transfer function
* Assuming R(s) = W (s) = 0 we can define the transfer function for measurement noise

• Y (s)
V (s) = −H(s) · Dcl(s)G(s)

1 + H(s)Dcl(s)G(s) = −H(s)T (s)

Stability

• Consider an unstable plant G(s) = b(s)
a(s) , i.e. a(s) has roots in the RHP; how can we design our controller

to make the system stable?
– Let the controller be c(s)

d(s)

– For the open loop control we have Tol = b(s)
a(s)

c(s)
d(s)

* Theoretically we can design c(s) to cancel the unstable roots of a(s), but as previously
mentioned, this is impractical

* We can make the same argument for cancelling bad zeroes (zeroes with small real part causing
large overshoot)
• For a nonminimum-phase zero, we can’t do this at all because we’d need an unstable pole

in the controller
* Therefore in practice we can’t use open-loop control to stabilize a plant

– For closed-loop controllers, assume H(s) = 1 for the sensor, then Tcl = b(s)c(s)
a(s)d(s) + b(s)c(s)

* Now we have a lot more options for eliminating the unwanted poles
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• Example: Inverted pendulum (segway)

–
{

(mt + mp)ẍ + bẋ − mplθ̈0 = u

(I + mpl2)θ̈ − mpglθ − mplẍ = 0
* mt, mp are the masses of the cart and pendulum, I is the moment of inertia of the pendulum, l

is the length of the pendulum, x is the cart’s displacement and θ is the angle of the pendulum
from normal

– G(s) = Θ(s)
U(s) = mpls

((mt + mp)(I + mpl2) − m2
pl2)s3 + b(I + mpl2)s2 − mpgl(mt + mp)s − mpgbl

– If we assume b = 0 then we get a send order system with ((mt + mp)(I + mpl2) − m2
pl2)s2 −

mpgl(mt + mp) in the denominator
* We can immediately tell that this is unstable by the RH criterion since since the s1 term is

missing
– Assume mp = 1 kg, I = 1 kgm2, l = 1 m, mt = 0 then we get G(s) = 1

s2 − 10 = 1
(s + 3.16)(s − 3.16)

– Consider a controller Dcl(s) = K(s + γ)
s + δ

and H(s) = 1
* Choosing γ = −3.16 cancels the RHP pole, but this is impractical
* Choose γ = +3.16 cancels the stable pole, leaving K

(s − 3.16)(s + δ) + K
* Now we can choose δ and K to move both poles of this second-order system to the LHP

Tracking

• We want to make the output follow the reference input as closely as possible, in effect having a unity
transfer function from reference to output

• For open-loop control, we again have Tol = b(s)
a(s)

c(s)
d(s)

– Designing the controller to cancel the plant’s transfer function is only possible under the constraints:
* The plant needs to be stable (and stable poles cannot be too close to the imaginary axis)

• Trying to cancel out stable poles close to the imaginary axis may make the system too
sensitive and cause unstable transients

* The plant should have no zeroes in the RHP (since we’d need an RHP pole to cancel that)
* The controller transfer function must be proper so it can be physically realized (it must be

causal)
• If the plant is strictly proper, this can be an issue since the controller would have to be

improper
• Digital controllers may be an exception

* The controller cannot go beyond the plant’s actuation limit (the response can’t be too fast, or
excite plant’s resonance modes)
• This will cause the system to be no longer linear

• For a closed-loop control system, most of the same restrictions apply, but we have more freedom to
tune the response

Regulation

• Regulation is the ability of the control system to keep the error small when the input is constant, with
added disturbances/noise

• In the open-loop case, the controller has no influence whatsoever on the effect of W (s) on the output
• For the closed-loop controller: Ecl = (1 − T )R − GSW + HT V

– Ecl = 1 + G(s)Dcl(s)(H(s) − 1)
1 + H(s)G(s)Dcl(s) R − G(s)

1 + H(s)G(s)Dcl(s)W + H(s)G(s)Dcl(s)
1 + H(s)G(s)Dcl(s)V

– Notice that if D is large, the second term is small so effect of W is small, but the third term gets
closer to 1, so the effect of V is not reduced

– Conversely if D is small we have less effect of V but more of W
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– To address this, we can design Dcl(s) to have large values at low frequencies and small values at
high frequencies, since W is often low frequency and V is often high

Sensitivity

• The robustness of the system against variations in the plant behaviour
• Assume that the plant transfer function can change from G(s) to G(s) + δG(s)

• The sensitivity of the (overall) system transfer function T to plant G is defined as ST
G =

δT
T

δG
G

= G

T
· δT

δG
– This is the ratio of the normalized change to the overall transfer function to the normalized change

to the plant transfer function
• For open-loop control:

– Tol + δTol = Dol(G + δG) = DolG + DolδG = Tol + DolδG = Tol + Tol

G
δG =⇒ δTol = Tol

G
δG

* δTol

Tol
= δG

G
so the sensitivity is 1

– i.e. whatever change happens in the plant, it will be immediately reflected in the entire system
• For closed-loop control, STcl

G = G

Tcl

δTcl

δG
= G

Tcl
· dTcl

dG

– We can show that STcl

G = 1
1 + HGDcl

* This is why we define the sensitivity transfer function as S = 1
1 + HGDcl

* The sensitivity is not 1 but is mitigated by the additional term in the denominator
* The larger the controller Dcl, the more robust it is to changes in the plant

– The complementary sensitivity transfer function is T = GDcl

1 + HGDcl
* Notice that this is just the closed-loop transfer function
* This is named so because for the case of a perfect sensor H(s) = 1, S + T = 1
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