Lecture 13, Feb 27, 2024

Control System Performance

e In open-loop control, we control the plant without using feedback from its output
e For open-loop control, Y,; = GD,4R + GW
- E,y=R-Y,,=(1—-GDy,)R—-GW
— Assuming no disturbance so W (s) = 0, we can define the open-loop transfer function

— To(s) = 28 = G(8)Dyi(s)
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Figure 1: Closed-loop control.

e For closed-loop control, Yy, = TR+ GSW — HTV
Eu=R-Y,;=01-T)R—GSW + HTV
* Notice the negative sign in front of the W term, since the output is subtracted from reference
— In this case, V(s) is noise in our sensor measurements, which we separate from W (s)
* W(s) is usually low-frequency
* V(s) is usually high-frequency
— Since we have an LTI system, we can consider the input and sources of noise separately
* Assuming W (s) = V(s) = 0 we can define the closed-loop transfer function
. 7-(5) ( ) G(S)DCZ(S) — cl(s)
R(s) 1+ H(s)G(s)Da(s)
* Assuming R(s) = V(s) = 0 we can define the transfer function for process noise
Y(s) 1
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¢ Recall that S(s) is the se nszthty transfer function
* Assuming R(s) = W(s) = 0 we can define the transfer function for measurement noise
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Stability
b(s)

)’ i.e. a(s) has roots in the RHP; how can we design our controller
a(s

o Consider an unstable plant G(s) =

to make the system stable?

c(s)

— Let the controller be —=

d(s)
b(s) ¢

— For the open loop control we have T,; = —)

S
* Theoretically we can design c(s) to cancel the unstable roots of a(s), but as previously
mentioned, this is impractical
* We can make the same argument for cancelling bad zeroes (zeroes with small real part causing
large overshoot)
e For a nonminimum-phase zero, we can’t do this at all because we’d need an unstable pole
in the controller
* Therefore in practice we can’t use open-loop control to stabilize a plant
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— For closed-loop controllers, assume H(s) =1 for the sensor, then T,; =

* Now we have a lot more options for eliminating the unwanted poles



o Example: Inverted pendulum (segway)
(m¢ +my)E + b — myly = u
(I +myl*)0 — mygld — myli =0
* my, my are the masses of the cart and pendulum, I is the moment of inertia of the pendulum, [
is the length of the pendulum, z is the cart’s displacement and 6 is the angle of the pendulum
from normal
CG(s) = O(s) _ mpls
U(s)  ((m¢+mp)(I +mpl?) —m2i2)s3 + b(I + myl?)s? — mygl(mys +my)s — mygbl
— If we assume b = 0 then we get a send order system with ((m; + m,)(I + m,l*) — m}%lQ)s2 -
mypgl(my + my) in the denominator
* We can immediately tell that this is unstable by the RH criterion since since the s' term is
missing
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— Assume m,, = 1kg, I = 1kgm? [ = 1m,m; = 0 then we get G(s) = 210 (5 £3.16)(s —3.10)

K
— Consider a controller D(s) = % and H(s) =1
* Choosing v = —3.16 cancels the RHP pole, but this is impractical

K

(s —3.16)(s+ )+ K
* Now we can choose § and K to move both poles of this second-order system to the LHP

* Choose v = +3.16 cancels the stable pole, leaving

Tracking

e We want to make the output follow the reference input as closely as possible, in effect having a unity
transfer function from reference to output
b(s) c(s)

e For open-loop control, we again have T, = —~ —
a(s) d(s)
— Designing the controller to cancel the plant’s transfer function is only possible under the constraints:
* The plant needs to be stable (and stable poles cannot be too close to the imaginary axis)
o Trying to cancel out stable poles close to the imaginary axis may make the system too
sensitive and cause unstable transients
* The plant should have no zeroes in the RHP (since we’d need an RHP pole to cancel that)
* The controller transfer function must be proper so it can be physically realized (it must be
causal)
o If the plant is strictly proper, this can be an issue since the controller would have to be
improper
o Digital controllers may be an exception
* The controller cannot go beyond the plant’s actuation limit (the response can’t be too fast, or
excite plant’s resonance modes)
e This will cause the system to be no longer linear
e For a closed-loop control system, most of the same restrictions apply, but we have more freedom to
tune the response

Regulation

e Regulation is the ability of the control system to keep the error small when the input is constant, with
added disturbances/noise

 In the open-loop case, the controller has no influence whatsoever on the effect of W (s) on the output

e For the closed-loop controller: Ey; = (1 —T)R— GSW + HTV

B, = 1+ G(s)Dg(s)(H(s) — 1)R B G(s) n H(s)G(s)Du(s)

¢ 1+ H(s)G(s)Dg(s) 14+ H(s)G(s)Dg(s) 14+ H(s)G(s)Dg(s)

— Notice that if D is large, the second term is small so effect of W is small, but the third term gets
closer to 1, so the effect of V' is not reduced

— Conversely if D is small we have less effect of V' but more of W




— To address this, we can design D (s) to have large values at low frequencies and small values at
high frequencies, since W is often low frequency and V is often high

Sensitivity

The robustness of the system against variations in the plant behaviour
Assume that the plant transfer function can change from G(s) to G(s) + dG(s)
5T
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The sensitivity of the (overall) system transfer function T' to plant G is defined as S = % =T 50
G
— This is the ratio of the normalized change to the overall transfer function to the normalized change
to the plant transfer function
For open-loop control:

T, T,
— Ty + 6Ty = Doy(G + 6G) = DyyG + Doi6G = Ty + Doy6G = Ty + 6150 — 6T, = ?laa
oT, oG
* TOI =5 % the sensitivity is 1
ol
— i.e. whatever change happens in the plant, it will be immediately reflected in the entire system

5Ty G dTy

For closed-loop control, Sgd =7 %0 7. dC
cl cl
1

— We can show that Sgd = TTHGD,
cl

1
* This is why we define the sensitivity transfer function as S =

1+ HGD,
* The sensitivity is not 1 but is mitigated by the additional term in the denominator

* The larger the controller D, the more robust it is to changes in the plant
GD.

1+ HGD,
* Notice that this is just the closed-loop transfer function

* This is named so because for the case of a perfect sensor H(s) =1, S+ T =1

— The complementary sensitivity transfer function is 7 =
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