
Lecture 11, Feb 12, 2024
Second Order System Response (Continued)

• We can now generalize our system to H(s) = Kω2
n

s2 + 2ζωns + ω2
n

– In this case K is the DC gain
• Without any zeroes, we have 3 parameters K, ωn, ζ to fully specify the system’s behaviour

– In practice, we look for regions in the s plane where we can put the poles
– e.g. if we want to specify a maximum rise time trd, settling time tsd and overshoot (corresponding

to some damping ζd), then we have:
* ωn ≥

1.8
trd

* ζ ≥ ζd

* σ ≥ 4.6
tsd

* Combining these 3 requirements, we see that the allowed region for the pole is indicated in
the figure below

Figure 1: Allowed regions of the s-plane based on the system design requirements.

Effect of Zeroes

• Consider the system mÿ(t)+bẏ(t)+ky(t) = kf(t) with initial conditions given by y(0−) = k

b
y0, ẏ(0−) =

0, f(t) = 0; consider y0 as the system input
– Laplace transform the system: m(s2Y (s)− sy(0−)− ẏ(0−)) + b(sY (s)− y(0−)) + kY (s) = kF (s)

– Y (s) =
s + b

m

s2 + b
m s + k

m

y(0−)

– Again let ωn =
√

km, ζ = b

2
√

km
– Notice that the system now has a zero

– Y (s)
y0

=
ωn

2ζ (s + 2ζωn)
s2 + 2ζωns + ω2

n

– In the underdamped case 0 ≤ ζ < 1, the poles are −ζωn ± jωn

√
ζ2 − 1 = −σ± jωd with a zero at

z1 = −2ζωn = −2σ

– Normalize by ωn: Y (s)
y0

=
1

2ζ
s

ωn
+ 1(

s
ωn

)2
+ 2ζ s

ωn
+ 1

* By doing this we can ignore ωn

• More generally, H(s) =
1

αζ s + 1
s2 + 2ζs + 1

– The DC gain is still 1
– We have generalized the 2 to α and replaced s

ωn
by s (equivalent to t← ωnt)
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– For this system the zero is at z = −ασ

– We can write this as H(s) = Hp(s) + 1
αζ

sHp(s) where Hp = 1
s2 + 2ζs + 1

* Hp(s) is a second-order transfer function with no zeroes
* We see that the effect of a zero is equivalent to adding s times the transfer function
* In time domain, this is equivalent to adding the derivative of the response to itself (since

multiplication by s is differentiation)
– The DC gain of the system is yss = lim

s→0
H(s) = lim

s→0
Hp(s)

* The DC gain of the original transfer function is not changed by adding a zero
* The steady-state response is unaffected by adding zeroes

Figure 2: Poles and zeros of the example system.

Figure 3: Plot of the system’s transient step response. y0 is the response without the zero, and yd is its
derivative.

• The effect of adding a zero is to add the derivative of the response to itself, resulting in a shorter
rise/peak time and larger overshoot

– With increasing α, the system gets closer to the response without a zero
– Increasing alpha means the zero moves further into the negative

* In general, the further the zero gets from the poles, the less its effect will be
– For ζ values of 0.5 or above, any value of α larger than 4 will have a negligible effect
– Note adding a zero may inadvertently affect the initial conditions of the system

* By the initial value theorem we can find y(0) by taking the limit as s→∞
* Adding zeros can make y(0) nonzero

• What if α is negative, so the zero is in the right hand plane?
– This doesn’t make the system unstable (since only the pole locations determine system stability)
– The effect is now subtractive, so the system slows down and the rise/peak time is increased

* The overshoot is far less than the case where the zero is in the LHP (however it is still more
than the case of having no zeroes)

– The system may start in the “wrong direction” – moving in the opposite direction as the equilibrium
initially
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Figure 4: System step response for a nonminimum-phase zero.

* This is often undesirable
– These systems are called nonminimum-phase zeroes

• If a zero is close to a pole, it can “neutralize” the effect of the pole
– We can deliberately place zeros to neutralize poles to change the system behaviour

– Consider H1(s) = 2
(s + 1)(s + 2) = 2

s + 1 −
2

s + 2 and H2(s) =
2

1.1 (s + 1.1)
(s + 1)(s + 2) = 0.18

s + 1 + 1.64
s + 2

* Same characteristic equation and DC gain, but the second has a zero very close to a pole
* Notice in H2, the part corresponding to the second pole at s = −2 stayed roughly the same,

while the first pole at s = −1 diminished significantly
– In the figure below, the response of H2 is much closer to the first-order system H12 than H1
– Mathematically we can use a zero on the RHP to neutralize an unstable pole, but this should

never be done in practice because we never know where exactly the pole is, so the zero may not
overlap perfectly

* This also applies for LHP poles that are close to being unstable

Figure 5: Effect of zeroes close to a pole.

• Now consider the effect of complex poles on the system

– Example: H1(s) = 1.01
α2 + β2 ·

(s + α)2 + β2

(s + 1)[(s + 0.1)2 + 1]
* The term in the front normalizes the DC gain to 1
* The zeroes are at z1, z2 = −α± jβ
* The poles are at p1 = −1, p2, p3 = −0.1± j1
* The closer the poles get to the zeroes, the less their effect becomes
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Figure 6: Effect of complex poles; β = 1 is used in all cases.

Higher Order Systems
• Generally, the higher the system order, the more complex it is and the more lag we will see in the

system
• The rise and peak times will generally increase and overshoot deceases as we add more poles
• The transient response is slowed down but they have little effect on the settling time
• Additional poles are more effective the closer they are to the existing second-order poles

– Generally if they are 4 or more times further, their effect can be ignored
• The overall system response is the sum of terms due to each pole/pair of poles

– Poles having a real part closer to zero will have a much more pronounced effect on the system
• The effect of the poles is determined by:

– The real part of the pole, σ, determines both the stability and the system time constant (rate of
decay)

– The imaginary part of pole, ωd, determines the damped frequency
– The magnitude of the pole determines the natural frequency of the system
– The argument/angle of the pole determines the damping ratio

• Based on these, we can approximate the system and reduce its order to make it easier to analyze

Summary

For a second-order system with no finite zeroes, the transient response can be characterized approxi-
mately by 3 characteristics:

• Rise time: tr ≈
1.8
ωn

(if the rise time is too long, increase the natural frequency)

• Overshoot: Mp = e
− πζ√

1−ζ2 (if there is too much overshoot, increase the damping ratio)
• Settling time: ts ≈

4.6
σ

(if the system takes too long to settle, move the pole to the left)
Real zeroes in the LHP will significantly increase the overshoot but decrease the rise time (if it is
within a factor of 4 of the real part of the complex poles); real zeroes in the RHP (nonminimum-phase
zeroes) will reduce the overshoot, but may cause the system to start in the wrong direction. Zeroes
close to poles may cancel out their effects on the system.
Additional real poles in the LHP will significantly increase the rise time but decrease the overshoot
(again, if it is within a factor of 4 of the real part of existing poles).
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