Lecture 10, Feb 8, 2024

Second Order System Response (Continued)

e Consider the step response
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* Where 0 = tan~! (ﬂ) = tan~! (wd>
o Cwn
e For an overdamped system, the two separate poles lie on the real axis, and with decreasing ¢ the poles
move together until they overlap, and then move radially into the imaginary axis
e The system starts with no oscillation but a slow response to faster responses but oscillations begin;
when ¢ = 0 the poles are purely imaginary, at which point the response is purely oscillatory and no
decay occurs
— When ¢ = 1, the poles overlap, and we get critical damping, which is the fastest possible system
response without oscillation
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Figure 1: Step response of an underdamped second-order system.

o For the second order system, we can characterize it using the following (for a unit step input):
— DC gain y,s: the steady-state value of the system output
— Peak time ¢,,: time to reach the maximum overshoot/undershoot point
— Overshoot M,,: the max amount the output overshoots y,s, divided by the steady state value
(usually as a percentage)
— Rise time t¢,: the time the system takes to rise from 10% to 90% of y,s
— Settling time t,: the time the system takes to reach, and stay within, 1% of yss (2% in some texts)
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o DC gain: y,5 = il_r}r(l) sYs(s) = ll_l’)r(l) SEH(S) = ] =1
— The DC gain here is 1 because when we derived the system, we multiplied v by k&
— Without this scaling the DC gain would be k instead
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Figure 2: Illustration of the characteristics of second-order system response.

o Peak time:
— Take derivative: g,(t) = L7 {sYi(s)} = £L7* {slH(s)} =y,(t)
s

* Note the derivative of the step response is just the impulse response

— Therefore y;(t) = \/%e_cw"t sin (wn\/ 1- (215)
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— The first peak occurs at t, =
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— As we reduce the damping,

e Overshoot:

— Substitute ¢, into the step response to get the peak of the response
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— We know cosf = /1 — (2 so this simplciﬁes tol+e 17(542

~ The overshoot is therefore M, = e Vi-¢ (or times 100 for percentage)
— Notice that this depends only on ¢
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* Usually we're interested in two values: ¢ = 3 which gives 16% overshoot, and ¢ = 0.7 which

gives 5% overshoot
— The percent overshoot decreases with ¢, but w,t, increases with ¢

o Rule of thumb: the response of the second-order underdamped systems (with no finite zeroes) with
different damping ratios rises roughly with the same pace
— Typically we related ¢, to only w,, instead of also (, as an approximation

— For ¢ = 0.5, we can approximate t, ~ —

w
— We typically choose ¢ between 0.5 and 0.7 for a balance between overshoot and rise time

o For settling time we can approximate the deviation of the response by the exponential only
4.6 4.6
— Therefore e “nts ~ 0.01 = t,~ — = —
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Figure 3: Overshoot as a function of damping ratio.
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