
Lecture 10, Feb 8, 2024
Second Order System Response (Continued)

• Consider the step response
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• For an overdamped system, the two separate poles lie on the real axis, and with decreasing ζ the poles

move together until they overlap, and then move radially into the imaginary axis
• The system starts with no oscillation but a slow response to faster responses but oscillations begin;

when ζ = 0 the poles are purely imaginary, at which point the response is purely oscillatory and no
decay occurs

– When ζ = 1, the poles overlap, and we get critical damping, which is the fastest possible system
response without oscillation

Figure 1: Step response of an underdamped second-order system.

• For the second order system, we can characterize it using the following (for a unit step input):
– DC gain yss: the steady-state value of the system output
– Peak time tp: time to reach the maximum overshoot/undershoot point
– Overshoot Mp: the max amount the output overshoots yss, divided by the steady state value

(usually as a percentage)
– Rise time tr: the time the system takes to rise from 10% to 90% of yss
– Settling time ts: the time the system takes to reach, and stay within, 1% of yss (2% in some texts)
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– The DC gain here is 1 because when we derived the system, we multiplied u by k
– Without this scaling the DC gain would be k instead
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Figure 2: Illustration of the characteristics of second-order system response.

• Peak time:
– Take derivative: ẏs(t) = L−1 {sYs(s)} = L−1
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* Note the derivative of the step response is just the impulse response
– Therefore yi(t) = ωn√
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– The first peak occurs at tp = π
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– As we reduce the damping,
• Overshoot:

– Substitute tp into the step response to get the peak of the response

– ys(tp) = 1 − e
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– We know cos θ =
√

1 − ζ2 so this simplifies to 1 + e
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– The overshoot is therefore Mp = e
− πζ√

1−ζ2 (or times 100 for percentage)
– Notice that this depends only on ζ

* Usually we’re interested in two values: ζ = 1
2 which gives 16% overshoot, and ζ = 0.7 which

gives 5% overshoot
– The percent overshoot decreases with ζ, but ωntp increases with ζ

• Rule of thumb: the response of the second-order underdamped systems (with no finite zeroes) with
different damping ratios rises roughly with the same pace

– Typically we related tr to only ωn instead of also ζ, as an approximation
– For ζ = 0.5, we can approximate tr ≈ 1.8

ωn
– We typically choose ζ between 0.5 and 0.7 for a balance between overshoot and rise time

• For settling time we can approximate the deviation of the response by the exponential only
– Therefore e−ζωnts ≈ 0.01 =⇒ ts ≈ 4.6
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Figure 3: Overshoot as a function of damping ratio.
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