
Lecture 1, Jan 8, 2024
Taxonomy of Control Systems

• A control system maintains important process/plant characteristics at desired targets despite external
noise, perturbations and uncertainties

• Control systems can be natural or artificial (human-made), manual or automatic; we focus on automatic
systems

• Regulatory control maintains the plant at a fixed setpoint despite external noise, disturbances, and
system uncertainties

• Tracking (servo) control tracks the plant’s output to a desired trajectory
• Open-loop control systems rely only on existing knowledge of the system and not the system’s output;

issues:
– System variation: if the system changes, the dynamics will be different, so the controller fails
– Unsatisfactory dynamics: cannot alter the system dynamics
– External disturbances and noise: cannot adapt to external disturbances

• Closed-loop (feedback) control systems determine the control actions based on the measurements of the
plat’s output

– Benefits:
* Robustness: ability to work despite unknown or inaccurate plant models, external disturbances,

and noise
• A robust system is both not very sensitive (i.e. doesn’t change a lot if system parameters

change) and good at disturbance regulation/rejection (i.e. eliminating disturbances/noise)
• Note we usually distinguish between disturbance and noise based on frequency (high

frequency disturbances are referred to as noise)
* Ability to enhance system dynamics and improve performance (regulation or tracking)

– However, they are more complex, and stability can be an issue – if the controller is not designed
properly, it can work against the goal

• In classic feedback control:
– System parameters are either invariant or varies insignificantly
– Control actions rely on immediate and not future values of the plant output
– No guarantees can be made about optimality
– Relies on a (roughly) linear relationship between input or output, in the operational range or close

vicinity of the nominal operating point
* This implicitly assumes we operate near the nominal output

• In summary, we want our controllers to be robust, stable, and have the desired transient and steady-state
performance

• Devices are modular components of a process (e.g. sensors); the process is the dynamic system we want
to control, without the actuator; the plant is the process with actuators, but not the controller; the
system is everything, including plant and controller

– Note these definitions are not universal

Lecture 2, Jan 11, 2024
Classic Feedback Control Example: Cruise Control

• This is an example of a regulation problem since we wish to maintain a fixed speed
• Simplified linear model: at a nominal speed of 60 mph, a 1 degree change in throttle angle (control

command u) causes a 10 mph change in speed (output y)
– Disturbance model: road grade change of 1% causes speed decrease of 5 mph (i.e. half the effect of

a 1 degree throttle change)
– Sensor model: speedometer is accurate and without noise, i.e. we get perfect measurements

• Using open-loop control, we can simply scale down the setpoint by a factor of 10 since that is the plant
gain

1

Figure 1: General system block diagram.

Figure 2: Simplest linearized model of the plant.

Figure 3: Open-loop controller.

2

– yol = 10(u− 0.5w) so if we substitute yol = r

10 , y = r − 5w
– If there is no disturbance, the output is perfect, but if there is a road grade change, then we will

always be off
– Define the error as eol = r − yol = 5w
– The percentage error is e

r
× 100%

• For open-loop control, if w ̸= 0, or if we don’t know the plant gain exactly or the plant gain changes,
then we will have error

Figure 4: Closed-loop controller.

• Using closed-loop control:
– ycl = 10(u− 0.5w) = 10(10(r − ycl)− 0.5w) =⇒ ycl = 100

101r −
5

101w
– Notice that the factor in front of w is decreased significantly, so we are a lot less susceptible to

disturbances
* If we increase the gain, the effect of noise will be even smaller

– However, with w = 0, we don’t have ycl = r, but it gets close
– The error is e = 1

100r, which reduces if we increase the gain
– Generally, for a feedback system, we want to increase the gain which would generally decrease the

error; however, for many systems increasing the gain makes the transient behaviour worse or even
make the system unstable, which holds us back

• The open-loop gain of a system is the overall gain of the system (disregarding feedback), often equal to
the product of the controller and plant gains

• We want to increase this gain as much as possible, but this involves a tradeoff between decreasing error
and getting desirable transient behaviour/stability

System Modelling
• System: A collection of components of interest, demarcated by a boundary, interacting through certain

physical principles
– System parameters C are properties that define the components of the system

* e.g. the resistance of a resistor, the mass of an object
– State variables X is the minimal set of variables that completely identify the “state” of the system

at each moment
* The minimality of this set is important!
* Given system parameters, by knowing the input and state variables, the output can always be

identified
* For many systems, the output are the same as the state variables
* e.g. positions and velocities of rigid bodies; voltages of nodes and currents through elements

• Static systems are where the output Y (t) only depends on the input U(t) at any time t, i.e. the state
variables do not change; otherwise the systems are dynamic

– Formulated as Y (t) = H(U(t),C) ⇐⇒ yi(t) = hi(u1(t), . . . ,um(t); c1, . . . , ck)

3

– When we given a input to a static system at time t1, we get the output immediately also at time t1
– Dynamics systems’ output also depend on the history of the input
– Example: circuit with R1 in series with R2,R3 in parallel; take output to be the voltage across
R2,R3

* The parameters are the resistance values
* y(t) = R2R3

R1(R2 +R3) +R2R3
u(t)

* Since the relationship does not depend on any state variables, the system is static
– Static systems do not have any energy storage or dissipation elements; they don’t have “memory”

• Dynamic systems are where the current value of the output depends on the past history as well as the
present input; we can think of this as the state variables changing through time

– Y (t) = H(U(τ),C), 0 ≤ τ ≤ t ⇐⇒ Y (t) = H(U(t),X(t), t,C)
* Acausal dynamic systems have outputs that can also depend on future inputs; however all

physical systems are causal so we will not worry about this
– Example: RC circuit

* System parameters are C and R

* y(t) = 1
C

�
i(t) dt =⇒ i(t) = C

dy
dt

* We can form an ODE y(t) +RC
dy
dt u(t)

* Assuming capacitor starts uncharged, y(t) = u(t)
(

1− e− t
RC

)
• A system model is a simplified representation (or abstraction) of a physical system

– A complete/universal model is often impossible and unnecessary, so in system modelling we abstract
away certain details

– An effective model is the simplest model that does the job
– Modelling is useful for conceptual analysis (of the problem), controller design, and detailed

simulation for verification (whether the model is correct) and validation (whether the design works
in the real world) etc

Lecture 3, Jan 15, 2024
Taxonomy of System Models

• Dynamic system models can be physical (i.e. a prototype), mathematical (e.g. simulations) or hybrid
(HITL simulation)

• Mathematical models can be one of 3 types:
– Observation-based (experimental): black-box approach

* Model is developed only based on empirically observed input-output relations
* Used when the system’s internal dynamics are unknown or too complex to model, e.g. biological

systems
– Knowledge-based: white-box approach

* Using known dynamics of the system to model it
– Hybrid: grey-box approach

* Model is based on both empirical input-output relations and knowledge of the system
* DEs are used for the model and parameters are identified by experiments

• Within knowledge-based systems, models can be qualitative (expert systems, a set of if-then rules using
fuzzy sets/logic) or quantitative (analytical/using DEs, numerical algorithms/simulation, graphical
diagrams)

• This course will focus on dynamic, mathematical, knowledge-based, quantitative, analytical models in
the time, frequency and Laplace domains

• Systems can be lumped- or distributed-parameter
– Most physical systems have parameters that are continuously distributed, e.g. a real spring has

mass, stiffness, and damping distributed in all 3 axes
– For such distributed-parameter systems, not only do we need to model the dynamics in time, but

4

Figure 5: Taxonomy of system models.

also the distribution of properties in space
* This means using PDEs instead of ODEs and makes things much more complicated

– Lumped-parameter systems approximate the real physical system with a discrete number of
parameters, e.g. reducing a real spring to a point mass, ideal spring, and dashpot

– When reducing systems and simplifying them, make sure to state all assumptions
• Systems can be linear or nonlinear

– Physical systems are generally nonlinear, but the relation between input and output can be locally
linear within a narrow range (smooth nonlinearity)

– A linear model can approximate the system well in this case if the operation stays within a small
range

– Given a general nonlinear model Y = Ẋ = F (X,U), we wish to obtain an approximate linear
model Ẋ = AX + BU where A,B are constants, about an operating point X0,U0; this can be
achieved using a Taylor series

– Linear systems are desirable due to the principle of superposition
– If the coefficient on u is 1 (or identity), we can also reorder systems connected in series (principle

of interchangeability)
• In time-invariant systems, system parameters stay the same regardless of time, so the input-output

relationship does not change in time
– For a constant time delay T , if u(t) gives output y(t), then u(t− T) gives output y(t− T)
– Practically to check for time invariance, we will give the system some input then delay the output

by some time, and compare this against the system’s output for a delayed input
• Deterministic models assume that nominal values of inputs, initial conditions, states and parameters

(and thus the output) can all be identified without random deviations
– In probabilistic models, inputs, initial conditions, and/or parameters may vary according to a

PDF (noisy), but state variables are still deterministic
* Note static models can be probabilistic

– In stochastic models, the system state can vary as well

5

Lecture 4, Jan 18, 2024
Dynamic System Modelling

• Electrical, mechanical, fluid and thermal systems can be represented by analogous models, regardless of
the underlying system, by taking an energy perspective

• We divide basic elements into two groups: energy storage and energy dissipation; within energy storage,
elements can be either capacitive or inductive

• Each element is defined by either a through variable (aka t-type, a property that appears to flow through
the element unaltered), or across variable (aka a-type, a property that is measured as a difference at
the two ends of the element)

– Capacitive elements are represented by t-type variables; inductive elements are represented by
a-type variables

– All energy dissipation elements are represented by t-type variables
• Sometimes we might want to use the integrated version of the t-type and a-type variables

Figure 6: A-type and t-type state variables for the four types of systems.

Figure 7: Energy dissipation elements.

• Note this is referred to as a force-current analogy; alternatively we can have a force-voltage analogy
instead

• Example: cruse control model

6

Figure 8: Capacitive energy storage elements.

Figure 9: Inductive energy storage elements.

Figure 10: Free body diagram for the cruise control example.

7

– We apply a force u to the car of mass m, which has a resistive force proportional to the speed
– We want to know how the speed of the car varies in time
– Assumptions:

* Car is a rigid body
* Rotational inertia of the wheels is negligible
* Friction/drag is proportional to speed with a factor of b

– F = ma =⇒ u− bẋ = mẍ =⇒ ẍ+ b

m
ẋ = u

m

– Change variable to v: v̇ + b

m
v = u

m
– Typically, we rearrange the system to put all the outputs on the left and all the inputs on the right
– We get a first order linear ODE

Figure 11: Mass-spring-damper example.

• Example: mass-spring-damper system
– The input force f is applied at time 0; we want to know how x (measured from equilibrium) varies

in time as a result of this force
– xe is the equilibrium position of the mass with no force applied; x0 is the uncompressed length of

the spring
– In equilibrium, k(x0 − xe) = mg
– The full FBD would have the external force m upwards, the spring force k(x0 − (xe + x)) upwards,

the gravitational force mg downwards, the damping bẋ downwards
– k(x0 − xe − x)− bẋ−mg + f = mẍ

* Notice that the equilibrium condition means the k(x0 − xe) cancels with mg, so we have no g
term in the final expression

– Final ODE: mẍ+ bẋ+ kx = f (second order linear ODE)
– In general, in mechanical systems moving around their equilibrium state, the holding (static) forces

and moments required for maintaining the equilibrium do not contribute to the motion state
* In this example, the spring force and gravity at equilibrium are the holding forces
* Therefore we don’t have x0,xe or g in the model

• Example: automobile suspension system
– Each wheel of the car is equipped with a suspension system

* The tire itself acts like a spring
* The suspensions system consists of a spring and a dashpot

– Consider the car moving on a road with some profile; we wish to model the vertical movement of
the car body

– This is a single input, two output system because we also need to model the movement of the
wheel itself to get the movement of the car body

8

Figure 12: Automotive suspension system example.

Figure 13: Free body diagram for the example.

– Drawing free body diagrams around the equilibrium allows us to ignore gravity and consider only
the forces by the springs and dashpots

– Dynamic equations:
{
b(ẏ − ẋ) + ks(y − x)− kw(x− r) = m1ẍ

−ks(y − x)− b(ẏ − ẋ) = m2ÿ

– Rearrange:


ẍ+ b

m1
(ẋ− ẏ) + ks

m1
(x− y) + kw

m1
x = kw

m1
r

ÿ + b

m2
(ẏ − ẋ) + ks

m2
(y − x) = 0

Figure 14: KCL electrical system example.

• Example: electrical system with KCL
– Node 1: i∗ = i1 + iL
– Node 2: iL = i2 + i4
– Node 3: i(t) = i1 + i3 + iL

– i(t) = v1

R1
+ C1

dv1

dt + iL

– iL = C2
dv2

dt + v2

R2

9

– v1 − v2 = L
diL
dt

– LC1C2
d3v2

dt3 +
(
LC1

R2
+ LC2

R1

)
d2v2

dt2 +
(

L

R1R2
+ C1 + C2

)
dv2

dt +
(

1
R1

+ 1
R2

)
+ i(t)

– This ends up being a third order linear ODE

Lecture 5, Jan 22, 2024
More Dynamic System Examples

• Example: pendulum with point mass m under gravity, input torque Tc around the pivot
– Tc −mgl sin θ = Iθ̈ =⇒ θ̈ + g

l
sin θ = Tc

ml2
* We can do this since all the moments act on the same axis in planar motion

– Linearize using sin θ → θ for small angles
* These assumptions need to be checked later

– In free oscillation this would oscillate around 0 with ωn =
√
g

l
– If Tc is constant, then this gives a constant bias angle to the oscillation

Figure 15: Example: Crane with hanging load.

Figure 16: Free body diagram for the example.

• Example: consider a pendulum on a cart as shown above
– The cart is subject to an applied force and viscous friction (also gravity and normal forces which

cancel)
* The pendulum also applies unknown forces to the cart at the hinge position

10

* u−N − bẋ = mtẍ
– For the pendulum we write the equations about the centre of mass for both forces and moments,

since we don’t have a fixed point on the body anymore
* To find the accelerations of the centre of mass we differentiate its position

• r = xı̂+ l(̂ı sin θ − ȷ̂ cos θ)
• r̈ = ẍı̂+ lθ̈(̂ı cos θ + ȷ̂ sin θ)− lθ̇2(̂ı sin θ − ȷ̂ cos θ)

* N = mpẍ+mplθ̈ cos θ −mplθ̇
2 sin θ

* P −mpg = mpl ¨sinθ +mplθ̇
2 cos θ

* −Pl sin θ −Nl cos θ = Iθ̈

– Clean up to get
{

(mt +mp)ẍ+ bẋ+mplθ̈ cos θ −mplθ̇
2 sin θ = u

(I +mpl
2)θ̈ +mpgl sin θ +mplẍ cos θ = 0

– We can linearize this around θ = 0 for a crane system, or around θ = π for a segway (inverted
pendulum) system, assuming θ, θ̇ are small

Figure 17: Mechatronics diagram of the DC brushed motor model.

Figure 18: Free body diagrams for the two shafts.

• Example: DC brushed motor
– The brushes power the rotor and provide the polarity switching needed to maintain a constant

11

rotation in one direction
– The electric part can be obtained through KVL: la

dia
dt + raia = va −Keθ̇m

* Lorentz law: Tm = K1φia = Klia where φ is determined by the field strength, ia is the current
and K1 is determined by the loop geometry

* Faraday law: vb = K2φθ̇m = Keθ̇m where vb is the back-EMF, a voltage
– The mechanical part has 2 bodies: the shaft directly connected to the rotor and the output arm,

connected to the load
* The motor generates a torque Tm(t), which has to overcome a resistive torque load T (t) to

give the final output θm(t)
* For the smaller shaft: Tm − bmθ̇m − T0 = Jmθ̈m

• T0 is some torque applied by the larger output shaft
• bmθ̇m is a viscous friction torque
• Jm is the moment of inertia of the shaft

* For the larger shaft: T − blθ̇l = Jlθ̈l

* θl and θm are related as θl = ηθm and T0 = ηT since rmθm = rlθl

• η is the gear ratio, η = rm

ri
• Note we always use the smaller radius in the numerator so the gear ratio is always 1 or less

* This gives Jmθ̈m + bmθ̇m = Tm − ηT = Klia − ηT = Klia − ηJlθ̈l − ηblθ̇l

* Expand and rearrange: (Jm + η2Jl)θ̈m + (bm + η2bl)θ̇m = Ktia
– Now we can solve for ia from the mechanical system and its derivative and substitute into the first

equation
– This gives us a third order linear ODE, however we can reduce this by noting that the time constant

of the electric part is much smaller than the time constant of the mechanical part (i.e. after a
voltage change, the current stabilizes much faster than the motor speed), which allows us to ignore
the inductance of the coil and reduce the electric part to a static system, which reduces the overall
differential equation to 2nd order

Lecture 6, Jan 25, 2024
Linear Time-Invariant Systems

• Zero state response: the response of a system to some input when the system is initially “at rest”, i.e. all
inputs, outputs, states and their derivatives are initially zero

– When we talk about linear systems, we are usually assuming zero-state
• The most important property of linear systems is homogeneity and superposition – we can scale and

add inputs and the outputs will scale and add accordingly
• In a time-invariant system the parameters C are constant in time, so delaying the input will delay the

output by the same amount and leave it otherwise unchanged
– This also works in reverse – if the system output remains the same but delayed when the input is

delayed, then the system is time-invariant (we can show that this implies that C is constant)
• These properties let us determine the response of a system to any general input by only knowing its

impulse response

– Any general input u(t) can be approximated by a series of pulses p∆(t) =
{

1
∆ 0 ≤ t ≤ ∆
0 otherwise

* The input at t = k∆ has a value u(t) = u(k∆), so we can approximate this as u(k∆) ·∆ ·
p∆(t− k∆)
• Note we multiply by ∆ so the integral remains the same

* If the system has a response h∆(t) to p∆(t), then due to homogeneity and time-invariance the
response to the above input is y(t) = y(n∆) = u(k∆) ·∆ · h∆(n∆− k∆)

* Then the total response to all the pulses is y(t) =
∞∑

k=0
u(k∆) · δ · h∆(t− k∆)

– In the limit, p∆(t) becomes the Dirac delta function δ(t) (or unit impulse function); h∆(t) becomes

12

the impulse response h(t)

– Therefore the output is a convolution: y(t) =
� ∞

0
u(τ)h(t− τ) dτ = u(t) ∗ h(t)

* Formally the convolution integral should be from −∞, however we consider the zero-state
response so we don’t need to consider t < 0

* Furthermore, if t− τ < 0, we would be considering negative time for h(t), which makes no
sense for a causal system (in other words y(t) would depend on values of the input in the
future); therefore our upper bound is t instead of ∞

• Note this only applies to LTI systems, or upon linearization assuming a small input region

Summary

The response of an LTI system to any arbitrary input u(t) is given by

y(t) =
� t

0
u(τ)h(t− τ) dτ = u(t) ∗ h(t)

where h(t) is the response of the system to the unit impulse δ(t).

Figure 19: Response of the system to a series of pulses.

• Note convolution has the following properties:
– Commutativity: x1(t) ∗ x2(t) = x2(t) ∗ x1(t)

* Obtained by a simple change of variables
– Associativity: x1(t) ∗ [x2(t) ∗ x3(t)] = [x2(t) ∗ x2(t)] ∗ x3(t)

13

Figure 20: Approximation of any input function as a series of impulses.

– Distributivity: x1(t) ∗ [x2(t) + x3(t)] = x1(t) ∗ x2(t) + x2(t) ∗ x3(t)
– Shift: x1(t) ∗ x2(t− T) = x1(t− T) ∗ x2(t)

* x1(t) ∗ x2(t) = y(t) =⇒ x1(t− T1) ∗ x2(t− T2) = y(t− T1 − T2)

– Impulse: x(t) ∗ δ(t) =
� ∞

−∞
x(τ)δ(t− τ) = x(t)

– Width: the convolution of a function covering a length of time T1 and another function covering
T2 covers a time of T1 + T2

• Example: find the impulse response of the following system, with y(0−) = 0: ẏ + ky = u(t)

–
� 0+

0−
ẏ dt+ k

� 0+

0−
y dt =

� 0+

0−
δ(t) dt

* The second term goes to zero since y is a continuous function
* The right hand side is by definition 1

–
� 0+

0−
ẏ dt = 1 =⇒ y(0+)− y(0−) = 1 =⇒ y(0+) = 1

– Now we use the model of the system to find other times, which gives y = Aeαt

* Aαeαt + kAeαt = 0 =⇒ α = −k
* y(0+) = 1 =⇒ A = 1

– This gives y(t) = h(t) = e−kt1(t) where 1(t) =
{

0 t < 0
1 t ≥ 0

is the Heaviside step function (sometimes

denoted u(t))
* We need the 1(t) because for t < 0 we assumed zero-state

– For a general input u(t), y(t) =
� ∞

0
e−kτu(t− τ) dτ or

� t

0
e−kτu(t− τ) dτ for a causal system

* The Heaviside function is gone because our bound starts at 0, so it is 1 for the entire integration
range

14

Lecture 7, Jan 29, 2024
Laplace Transform

Definition

The Laplace transform for a generic function f(t) is defined as

F (s) ≡
� ∞

−∞
f(t)e−s dt

The unilateral (one-sided) Laplace transform is defined as

F (s) = L{f(t)} ≡
� ∞

0−
f(t)e−st dt

where s = σ + jω is a complex frequency variable with units of inverse time.

• The Laplace transform transforms linear ODEs into algebraic equations
• For our purposes since we only consider t ≥ 0, we consider all functions to be 0 for t < 0 and so the

unilateral transform suffices
• F (s) exists (i.e. the integral converges) if for all Re(s) > α we have |f(t)| < Meαt for all s ∈ C,M ∈ R,

i.e. f(t) grows slower than exponential
– When multiplying transforms, the output is only valid for values of s in the intersection of the

regions of convergence
• Some examples:

– Unit step: L{1(t)} =
� ∞

0
1(t)e−st dt = −1

s

[
e−st

]∞
0 = 1

s

– Unit impulse: L{δ(t)} =
� ∞

0−
δ(t)e−st dt = e−st

∣∣
t=0 = 1

* Note that we had to start at 0− to include 0 in the integration region
– Exponential: L

{
eαt
}

=
� ∞

0
eαte−st dt =

� ∞

0
e−(s−a)t dt = − 1

s− a

[
e−(s−a)t

]∞

0
= 1
s− a

* Note we need to assume Re(s) > Re(a) so that the exponent has a negative real part

– Sinusoid: L{cos(ωt)} =
� ∞

0
cos(ωt)e−st dt

=
� ∞

0

ejωt + e−jωt

2 e−st dt

= − 1
2(s− jω)

[
e−(s−jω)t

]∞

0
− 1

2(s+ jω)

[
e−(s+jω)t

]∞

0

= 1
2(s− jω) + 1

2(s+ jω)

= s

s2 + ω2

* Similarly we can show L{sin(ωt)} = ω

s2 + ω2

– Power of t:
� ∞

0
tne−st dt =

[
− t

n

s
e−st

]∞

0
+
� ∞

0
ntn−1 e

−st

s
dt

= n

s

� ∞

0
tn−1e−st dt

= n

s
L
{
tn−1}

= n!
sn+1

15

* Therefore the unit ramp function has L{t} = 1
s2

• Important properties:
– Linearity/superposition: L{α1f1(t) + α2f2(t)} = α1F1(s) + α2F2(s)

– Time delay: L{f(t− τ)1(t− τ)} =
� ∞

0
f(t− τ)1(t− τ)e−st dt

=
� ∞

τ

f(t− τ)e−st dt

=
� ∞

0
f(λ)e−s(τ+λ) dλ

= e−τs

� ∞

0
f(λ)e−sλ dλ

= e−τsF (s)
* A delay in time domain is a multiplication by an exponential in Laplace domain

– Differentiation: L
{

d
dtf(t)

}
=
� ∞

0
e−stḟ(t) dt

=
[
f(t)e−st

]∞
0 + s

� ∞

0
f(t)e−st dt

= sF (s)− f(0)
* Note the f(0) term vanishes for a zero-state response

* For higher derivatives: L
{

d2

dt2 f(t)
}

= s(sF (s)− f(0))− ḟ(0) = s2F (s)− sf(0)− ḟ(0)

* Going backwards: L{tf(t)} = − d
dsF (s)

– Integration: L
{� t

0
f(τ) dτ

}
=
� ∞

0

� t

0
f(τ) dτe−st dt

= −1
s

[� t

0
f(τ) dτe−st

]∞

0
+ 1
s

� ∞

0
f(t)e−st dt

= 1
s
F (s)

– Convolution: L{f(t) ∗ h(t)} =
� ∞

0

� t

0
f(t− τ)h(τ) dτe−st dt

=
� ∞

0

� t

0
f(t− τ)h(t)e−st dτ dt

=
� ∞

0

� ∞

τ

f(t− τ)h(τ)e−st dtdτ

=
� ∞

0

� ∞

0
f(λ)h(τ)e−s(λ+τ) dλ dτ

=
� ∞

0
f(λ)e−sλ dλ

� ∞

0
h(τ)e−sτ dτ

= F (s)H(s)
* This means we can multiply the Laplace transform of the input by the Laplace transform of

the impulse response to get the Laplace transform of the output
* Note L{f(t)h(t)} = 1

2πj (F (s) ∗H(s))

– Final Value Theorem: lim
t→∞

f(t) = lim
s→0

sF (s)

* Recall that L
{

d
dtf

}
= sF (s)− f(0)

* lim
s→∞

(sF (s)− f(0)) = lim
s→0

sF (s)− f(0) = lim
s→0

� ∞

0
e−st df

dt dt =
� ∞

0

df
dt dt = lim

t→∞
f(t)− f(0)

16

* Note this requires that f(t) and df
dt have Laplace transforms, and lim

t→∞
f(t) exists, i.e. it is

stable
– Initial Value Theorem: lim

t→0+
f(t) = lim

s→∞
sF (s)

Transfer Functions
Definition

Transfer Function: The ratio of the Laplace transforms of the output to the input of a system,
assuming that the system was initially at equilibrium (zero state/initial conditions).

• All transfer functions assume zero-state; if we want to look at initial conditions we shouldn’t use transfer
functions

• Given any input u(t) to the system, the output of the system in time domain is y(t) = h(t) ∗ u(t) where
h(t) is the impulse response

• In Laplace domain, the output is Y (s) = H(s)U(s) where H(s) = Y (s)
U(s) , the Laplace transform of the

impulse response, is the transfer function
• For all LTI systems, the transfer function of the system fully characterizes the system dynamics

• Most transfer functions are rational functions H(s) = KH
nH(s)
dH(s) = Kh

sm + b1s
m−1 + · · ·+ bm

sn + a1sn−1 + · · ·+ an

– Poles are the roots of dH(s)
* These are more important than the zeros

– Zeros are the roots of nH(s)
– Poles are denoted with an X while zeros are denoted by O on the complex plane when plotting
– KH is the transfer function gain
– dH(s) is the characteristic equation of the transfer function/system

* The system’s order is the degree of dH(s)
• For all causal systems, the relative degree n−m of the transfer function is always greater than or equal

to zero
– Consider H(s) = s; then for an input U(s), we get output Y (s) = sU(s), which means y(t) = d

dtu(t)
* Such a system cannot be causal, because in order to determine the derivative of the input, the

system needs to somehow anticipate the input’s behaviour in the future
* e.g. if we put in a sinusoid, it will be shifted to the left, which is non-causal
* Generally, zeros tend to push the system towards non-causality by moving the response earlier

in time, while poles push the system towards causality by delaying the response
– The transfer function is a proper ratio (if m < n, then it is strictly proper)
– Most systems we will study have strictly proper transfer functions

• H(s) = KH

∏m
i=1(s− zi)∏n
i=1(s− pi)

=
(
KH

∏m
i=1 zi∏n

i=1 pi

) ∏m
i=1

(
s
zi
− 1
)

∏n
i=1

(
s
pi
− 1
) where zi are the zeros, pi the are poles

• For any LTI system, the poles of a system determines its behaviour
– Note complex poles always come in conjugate pairs
– Any poles on the right hand plane are unstable, i.e. the output will keep growing

* Larger real values lead to faster growth
– Any poles on the left hand plane are convergent, i.e. output eventually settles to 0

* More negative real values lead to faster decay
– Poles with zero real part neither grow nor shrink in magnitude
– Any imaginary component in the pole causes the output to oscillate

* Larger imaginary component lead to higher oscillation frequency
• When there are multiple poles and zeros, they will interact with each other and lead to more interesting

behaviour

17

Figure 21: Behaviour of a system according to its poles.

• The DC gain (or static gain) is the steady-state response of the system to the unit step input
– This will give an output Ys(s) = H(s)U(s) = 1

s
H(s)

– Using FVT, lim
t→∞

ys(t) = lim
s→0

s

(
1
s
H(s)

)
= lim

s→0
H(s)

– This makes the DC gain very easy to find

Lecture 8, Feb 1, 2024
Block Diagrams

• We use block diagrams to depict cause-and-effect relationships within a system
– Each block shows a function acting on an input to generate output

* The block is depicted with a transfer function
– Arrows are used to represent the direction of signals (i.e. information flow)
– Circles are used for algebraic sum and differences of signals
– Nodes (aka pick-off points) are used for branching out signals

• Note when we have a feedback system, we usually depict the plant’ transfer function by G(s) and the
feedback’s transfer function by H(s)

Figure 22: General feedback system.

• Transfer function definitions for a general feedback system:

18

– Closed-loop TF: T = Y (s)
R(s) = Gc(s)Ga(s)G(s)

1 +Gc(s)Ga(s)G(s)H(s)

– Open-loop TF: L(s) = B(s)
Ea(s) = Gc(s)Ga(s)G(s)H(s)

* Note this is not the output to input without feedback (which would be feedforward TF)
* This is the ratio of the feedback signal to Ea(s)

– Error TF: E(s)
R(s) = R(s)− Y (s)

R(s) = 1 +Gc(s)Ga(s)G(s)(H(s)− 1)
1 +Gc(s)Ga(s)G(s)H(s)

* Note the E(s) here is not the same as Ea(s)

– Feedforward TF: Y (s)
Ea(s) = Gc(s)Ga(s)G(s)

* Note here we use Ea(s) not E(s)

– Feedback TF: B(s)
R(s) = Gc(s)Ga(s)G(s)H(s)

1 +Gc(s)Ga(s)G(s)H(s)
* This is the ratio of feedback signal to input signal
* We can find this easily by taking Y (s)

R(s)H(s)

– Sensitivity TF: S(s) = 1
1 +Gc(s)Ga(s)G(s)H(s)

* This is important to the robustness of the controller as we will later see
* This is the inverse of the characteristic equation

– Characteristic equation: 1 +Gc(s)Ga(s)G(s)H(s)
* This is the denominator of the closed-loop TF

• Block diagrams can be simplified to find the overall transfer function of the system
– There are a number of simplification rules

Figure 23: Block diagram reduction rules.

Lecture 9, Feb 5, 2024
First-Order System Response

• Consider a pure integrator: y(t) =
� t

0
u(t) dt+ y(0) which has transfer function H(s) = 1

s
if y(0) = 0

– The ODE is ẏ(t) = u(t)

– The impulse response is yi(t) = L−1 {H(s)} = L−1
{

1
s

}
= 1

– The step response is ys(t) = L−1
{
H(s)1

s

}
= L−1

{
1
s2

}
= t

– What if the initial condition is not zero?
* Laplace transform the ODE to get sY (s)− y(0) = U(s) =⇒ Y (s) = 1

s
U(s) + 1

s
y(0)

* For a step response, ys(t) = L−1
{

1
s2

}
+ L−1

{
1
s
y(0)

}
= t+ y(0)1(t) = t+ y(0)

• Consider an RC circuit with input voltage Ku(t)

19

Figure 24: Block diagram reduction rules.

– Form the ODE: T ẏ(t) + y(t) = Ku(t) where T = RC

– Laplace transform: TsY (s) + Y (s) = KU(s) =⇒ H(s) = Y (s)
U(s) = K

Ts+ 1
– Impulse response: yi(t) = L−1 {H(s)} = K

T
e− t

T

– Step response: ys(t) = L−1
{

K

s(Ts+ 1)

}
= KL−1

{
1
s
− T

Ts+ 1

}
= K

(
1− e− t

T

)
– We can see that T is the time constant of the system; the smaller it is, the faster the system evolves
– DC gain: yss = lim

t→∞
ys(t) = lim

s→0
s

K

s(Ts+ 1) = K

• In general a first-order system has transfer function H(s) = b

s+ a
and impulse response h(t) = be−at1(t)

– For positive a, this is stable and the system decays to 0; for negative a, this is unstable; for a = 0
the system maintains a constant output

* Positive a gives poles in the LHP and negative a gives poles in the RHP
– The step response is given by ys = b

a
(1− e−at)1(t)

* For positive a, this converges to the DC gain b

a
* For negative a this diverges exponentially
* For zero a this gives a linear response (note we can derive this by nothing H(s) = b

s
in this

case)
• The time constant is given by T = 1

a
– The rise time is given by tr ≈ 2.2T , which is the time taken for the output to go from 10% to 90%

of the DC gain
– The settling time is given by ts ≈

4.6
a

, which is the time taken for the output to reach 99% of the
DC gain

• In a first-order system, there is never any overshoot or oscillation; the output never passes the steady
state value

Second Order System Response
• Consider a spring-mass-dashpot system: mÿ(t) + bẏ(t) + ky(t) = kf(t)

20

Figure 25: Behaviour of the impulse and step responses for a general (strictly proper) first-order system.

– Laplace transform: m(s2Y (s)− sy(0−)− ẏ(0−)) + b(sY (s)− y(0−)) + kY (s) = kF (s)

– Y (s) =
k
m

s2 + b
ms+ k

m

F (s) +
s+ b

m

s2 + b
ms+ k

m

y(0−) + 1
s2 + b

ms+ k
m

ẏ(0−)

– Assuming zero state, H(s) = Y (s)
F (s) =

k
m

s2 + b
ms+ k

m

= ω2
n

s2 + 2ζωns+ ω2
n

* ωn =
√
k

m
is the natural frequency

* ζ = b

2
√
km

is the damping ratio

– The poles are at −ζωn ± ωn

√
ζ2 − 1

* Depending on ζ we can get real or imaginary poles
– If ζ > 1 (i.e. b > 2

√
km) we have two distinct real poles; the system is overdamped

* Let −σ1 = −ζωn + ωn

√
ζ2 − 1, −σ2 = −ζωn − ωn

√
ζ2 − 1

* Then ωn =
√
σ1σ2, ζ = σ1 + σ2

2√σ1σ2

– If ζ = 1 (i.e. b = 2
√
km) we have two overlapping real poles; the system is critically damped

* H(s) = σ2

(s+ σ)2 where σ = ωn

– If 0 ≤ ζ < 1 (i.e. b < 2
√
km) we have two complex conjugate poles; the system is underdamped

* The poles are s1, s2 = −σ ± jωd where σ = ζωn,ωd = ωn

√
1− ζ2

* H(s) = ω2
n

(s− (−σ + jωd))(s− (−σ − jωd)) = σ2 + ω2
d

(s+ σ)2 + ω2
d

* In this case the system oscillates
* ωd is the oscillation frequency and σ is the decay rate

• Consider the impulse response of the underdamped case

– yi(t) = L−1
{

(σ2 + ω2
d)

(s+ σ)2 + ω2
d

}
= L−1

{
(σ2 + ω2

d)
ωd

ωd

(s+ σ)2 + ω2
d

}
= σ2 + ω2

d

ωd
e−σt sin(ωdt)

– Alternatively yi(t) = ωn√
1− ζ2

e−ζωnt sin
(
ωn

√
1− ζ2t

)

21

Figure 26: Illustration of the system variables in polar form.

Figure 27: Response of an underdamped second-order system based on pole location.

– The response is a decaying exponential

Figure 28: Impulse response of an underdamped second-order system.

Lecture 10, Feb 8, 2024
Second Order System Response (Continued)

• Consider the step response

22

– ys(t) = L−1
{
H(s)
s

}
= L−1

{
σ2 + ω2

d

(s+ σ)2 + ω2
d)s

}
= L−1

{
1
s
− s+ 2σ

(s+ σ)2 + ω2
d

}
= L−1

{
1
s
− s+ σ

(s+ σ)2 + ω2
d

− σ

ωd

ωd

(s+ σ)2 + ω2
d

}
= 1− e−σt

(
cos(ωdt) + σ

ωd
sin(ωdt)

)
= 1− e−σtωn

ωd
cos(ωdt− θ)

* Where θ = tan−1
(ωd

σ

)
= tan−1

(
ωd

ζωn

)
• For an overdamped system, the two separate poles lie on the real axis, and with decreasing ζ the poles

move together until they overlap, and then move radially into the imaginary axis
• The system starts with no oscillation but a slow response to faster responses but oscillations begin;

when ζ = 0 the poles are purely imaginary, at which point the response is purely oscillatory and no
decay occurs

– When ζ = 1, the poles overlap, and we get critical damping, which is the fastest possible system
response without oscillation

Figure 29: Step response of an underdamped second-order system.

• For the second order system, we can characterize it using the following (for a unit step input):
– DC gain yss: the steady-state value of the system output
– Peak time tp: time to reach the maximum overshoot/undershoot point
– Overshoot Mp: the max amount the output overshoots yss, divided by the steady state value

(usually as a percentage)
– Rise time tr: the time the system takes to rise from 10% to 90% of yss
– Settling time ts: the time the system takes to reach, and stay within, 1% of yss (2% in some texts)

• DC gain: yss = lim
s→0

sYs(s) = lim
s→0

s
1
s
H(s) = ω2

n

ω2
n

= 1

– The DC gain here is 1 because when we derived the system, we multiplied u by k
– Without this scaling the DC gain would be k instead

• Peak time:
– Take derivative: ẏs(t) = L−1 {sYs(s)} = L−1

{
s

1
s
H(s)

}
= yi(t)

* Note the derivative of the step response is just the impulse response
– Therefore yi(t) = ωn√

1− ζ2
e−ζωnt sin

(
ωn

√
1− ζ2t

)

23

Figure 30: Illustration of the characteristics of second-order system response.

– ẏs(t) = yi(t) = 0 =⇒ ωn

√
1− ζ2t = nπ =⇒ t = nπ

ωn

√
1− ζ2

– The first peak occurs at tp = π

ωn

√
1− ζ2

= π

ωd

– As we reduce the damping,
• Overshoot:

– Substitute tp into the step response to get the peak of the response

– ys(tp) = 1− e
− πζ√

1−ζ2√
1− ζ2

cos(π − θ) = 1 + e
− πζ√

1−ζ2√
1− ζ2

cos θ

– We know cos θ =
√

1− ζ2 so this simplifies to 1 + e
− πζ√

1−ζ2

– The overshoot is therefore Mp = e
− πζ√

1−ζ2 (or times 100 for percentage)
– Notice that this depends only on ζ

* Usually we’re interested in two values: ζ = 1
2 which gives 16% overshoot, and ζ = 0.7 which

gives 5% overshoot
– The percent overshoot decreases with ζ, but ωntp increases with ζ

Figure 31: Overshoot as a function of damping ratio.

• Rule of thumb: the response of the second-order underdamped systems (with no finite zeroes) with
different damping ratios rises roughly with the same pace

– Typically we related tr to only ωn instead of also ζ, as an approximation
– For ζ = 0.5, we can approximate tr ≈

1.8
ωn

24

– We typically choose ζ between 0.5 and 0.7 for a balance between overshoot and rise time
• For settling time we can approximate the deviation of the response by the exponential only

– Therefore e−ζωnts ≈ 0.01 =⇒ ts ≈
4.6
ζωn

= 4.6
σ

Lecture 11, Feb 12, 2024
Second Order System Response (Continued)

• We can now generalize our system to H(s) = Kω2
n

s2 + 2ζωns+ ω2
n

– In this case K is the DC gain
• Without any zeroes, we have 3 parameters K,ωn, ζ to fully specify the system’s behaviour

– In practice, we look for regions in the s plane where we can put the poles
– e.g. if we want to specify a maximum rise time trd, settling time tsd and overshoot (corresponding

to some damping ζd), then we have:
* ωn ≥

1.8
trd

* ζ ≥ ζd

* σ ≥ 4.6
tsd

* Combining these 3 requirements, we see that the allowed region for the pole is indicated in
the figure below

Figure 32: Allowed regions of the s-plane based on the system design requirements.

Effect of Zeroes

• Consider the system mÿ(t)+bẏ(t)+ky(t) = kf(t) with initial conditions given by y(0−) = k

b
y0, ẏ(0−) =

0, f(t) = 0; consider y0 as the system input
– Laplace transform the system: m(s2Y (s)− sy(0−)− ẏ(0−)) + b(sY (s)− y(0−)) + kY (s) = kF (s)

– Y (s) =
s+ b

m

s2 + b
ms+ k

m

y(0−)

– Again let ωn =
√
km, ζ = b

2
√
km

– Notice that the system now has a zero

– Y (s)
y0

=
ωn

2ζ (s+ 2ζωn)
s2 + 2ζωns+ ω2

n

– In the underdamped case 0 ≤ ζ < 1, the poles are −ζωn ± jωn

√
ζ2 − 1 = −σ± jωd with a zero at

z1 = −2ζωn = −2σ

– Normalize by ωn: Y (s)
y0

=
1

2ζ
s

ωn
+ 1(

s
ωn

)2
+ 2ζ s

ωn
+ 1

25

* By doing this we can ignore ωn

• More generally, H(s) =
1

αζ s+ 1
s2 + 2ζs+ 1

– The DC gain is still 1
– We have generalized the 2 to α and replaced s

ωn
by s (equivalent to t← ωnt)

– For this system the zero is at z = −ασ
– We can write this as H(s) = Hp(s) + 1

αζ
sHp(s) where Hp = 1

s2 + 2ζs+ 1
* Hp(s) is a second-order transfer function with no zeroes
* We see that the effect of a zero is equivalent to adding s times the transfer function
* In time domain, this is equivalent to adding the derivative of the response to itself (since

multiplication by s is differentiation)
– The DC gain of the system is yss = lim

s→0
H(s) = lim

s→0
Hp(s)

* The DC gain of the original transfer function is not changed by adding a zero
* The steady-state response is unaffected by adding zeroes

Figure 33: Poles and zeros of the example system.

Figure 34: Plot of the system’s transient step response. y0 is the response without the zero, and yd is its
derivative.

• The effect of adding a zero is to add the derivative of the response to itself, resulting in a shorter
rise/peak time and larger overshoot

– With increasing α, the system gets closer to the response without a zero
– Increasing alpha means the zero moves further into the negative

* In general, the further the zero gets from the poles, the less its effect will be
– For ζ values of 0.5 or above, any value of α larger than 4 will have a negligible effect
– Note adding a zero may inadvertently affect the initial conditions of the system

* By the initial value theorem we can find y(0) by taking the limit as s→∞
* Adding zeros can make y(0) nonzero

• What if α is negative, so the zero is in the right hand plane?

26

Figure 35: System step response for a nonminimum-phase zero.

– This doesn’t make the system unstable (since only the pole locations determine system stability)
– The effect is now subtractive, so the system slows down and the rise/peak time is increased

* The overshoot is far less than the case where the zero is in the LHP (however it is still more
than the case of having no zeroes)

– The system may start in the “wrong direction” – moving in the opposite direction as the equilibrium
initially

* This is often undesirable
– These systems are called nonminimum-phase zeroes

• If a zero is close to a pole, it can “neutralize” the effect of the pole
– We can deliberately place zeros to neutralize poles to change the system behaviour

– Consider H1(s) = 2
(s+ 1)(s+ 2) = 2

s+ 1 −
2

s+ 2 and H2(s) =
2

1.1 (s+ 1.1)
(s+ 1)(s+ 2) = 0.18

s+ 1 + 1.64
s+ 2

* Same characteristic equation and DC gain, but the second has a zero very close to a pole
* Notice in H2, the part corresponding to the second pole at s = −2 stayed roughly the same,

while the first pole at s = −1 diminished significantly
– In the figure below, the response of H2 is much closer to the first-order system H12 than H1
– Mathematically we can use a zero on the RHP to neutralize an unstable pole, but this should

never be done in practice because we never know where exactly the pole is, so the zero may not
overlap perfectly

* This also applies for LHP poles that are close to being unstable

Figure 36: Effect of zeroes close to a pole.

• Now consider the effect of complex poles on the system

– Example: H1(s) = 1.01
α2 + β2 ·

(s+ α)2 + β2

(s+ 1)[(s+ 0.1)2 + 1]

27

* The term in the front normalizes the DC gain to 1
* The zeroes are at z1, z2 = −α± jβ
* The poles are at p1 = −1, p2, p3 = −0.1± j1
* The closer the poles get to the zeroes, the less their effect becomes

Figure 37: Effect of complex poles; β = 1 is used in all cases.

Higher Order Systems
• Generally, the higher the system order, the more complex it is and the more lag we will see in the

system
• The rise and peak times will generally increase and overshoot deceases as we add more poles
• The transient response is slowed down but they have little effect on the settling time
• Additional poles are more effective the closer they are to the existing second-order poles

– Generally if they are 4 or more times further, their effect can be ignored
• The overall system response is the sum of terms due to each pole/pair of poles

– Poles having a real part closer to zero will have a much more pronounced effect on the system
• The effect of the poles is determined by:

– The real part of the pole, σ, determines both the stability and the system time constant (rate of
decay)

– The imaginary part of pole, ωd, determines the damped frequency
– The magnitude of the pole determines the natural frequency of the system
– The argument/angle of the pole determines the damping ratio

• Based on these, we can approximate the system and reduce its order to make it easier to analyze

28

Summary

For a second-order system with no finite zeroes, the transient response can be characterized approxi-
mately by 3 characteristics:

• Rise time: tr ≈
1.8
ωn

(if the rise time is too long, increase the natural frequency)

• Overshoot: Mp = e
− πζ√

1−ζ2 (if there is too much overshoot, increase the damping ratio)
• Settling time: ts ≈

4.6
σ

(if the system takes too long to settle, move the pole to the left)
Real zeroes in the LHP will significantly increase the overshoot but decrease the rise time (if it is
within a factor of 4 of the real part of the complex poles); real zeroes in the RHP (nonminimum-phase
zeroes) will reduce the overshoot, but may cause the system to start in the wrong direction. Zeroes
close to poles may cancel out their effects on the system.
Additional real poles in the LHP will significantly increase the rise time but decrease the overshoot
(again, if it is within a factor of 4 of the real part of existing poles).

Lecture 12, Feb 15, 2024
Stability of LTI Systems

• For a transfer function H(s) = KH

∏m
i=1(s− zi)∏n
j=1(s− pj)

, the impulse response will look like a sum of exponen-

tials, y(t) =
n∑

j=1
Cje

pjt (assuming poles are distinct)

– The coefficients Cj depend on the initial conditions and locations of zeroes
– If a pole is repeated k times, we will have terms Cj0e

pj + Cj1te
pj + · · ·+ Cjk−1t

k−1epj

– The system response is bounded if and only if all Re(pj) ≤ 0 (regardless of repeating poles); hence
any poles in the RHP are unstable

Definition

We define three types of stability for systems:
• Bounded-Input-Bounded-Output (BIBO) Stability: Any bounded input generates a bounded

output (with no requirement on convergence).
• Asymptotic Stability: Any inital condition generates an output which approaches for zero as

time approaches infinity.
• Marginal (or Neutral) Stability: Any initial condition generates an output which is bounded (for

a zero input).

• Asymptotic stability is a generally stronger form of stability than BIBO
– All asymptotically stable systems are also BIBO stable

• For all LTI systems, all BIBO systems are also asymptotically stable
• If any poles are exactly on the imaginary axis, then if they are non-repeating, the system is

marginally/neurally stable, but if they are repeating, then the system is unstable
– This will result in either a constant output or a free oscillator

• The Routh-Hurwitz stability criterion can be used to identify the stability of a system without explicitly
factoring the characteristic equation

– Consider the characteristic equation sn + a1s
n−1 + a2s

n−2 + · · ·+ an−1s+ an

– If all poles are in the LHP, then all coefficients ai are positive and real
* Therefore if any ai ≤ 0, then the system is always unstable (or marginally stable)

– If all ai > 0, we need to form the Routh array to check for stability
* The array consists of n+ 1 rows, with row i corresponding to si

* Row n contains 1, a2, a4, . . .

29

* Row n− 1 contains a1, a3, a5, . . .
* Row n− 2 contains b1, b2, b3, . . . where:

• b1 = − 1
a1

det
[

1 a2
a1 a3

]
• b2 = − 1

a1
det
[

1 a4
a1 a5

]
• b3 = − 1

a1
det
[

1 a6
a1 a7

]
* Row n− 3 contains c1, c2, c3, . . . where:

• c1 = − 1
b1

det
[
a1 a3
b1 b2

]
• c2 = − 1

b1
det
[
a1 a5
b1 b3

]
• c2 = − 1

b1
det
[
a1 a7
b1 b4

]
* For xi, consider the 2 × 2 matrix formed by taking column 1 and column i + 1 of the two

previous rows, take the negative of its determinant and divide by the bottom left entry
• We treat any missing entries as zeroes
• This means for each row starting from n− 2, we will get one fewer element (zero entry)

per row
• By row 1 we are left with only one element
• For row 0 we still have one element, obtained by treating the missing entry as a zero when

calculating the determinant
• Past row 0 all entries will be zero, so we stop

* Note: all elements of each row can be divided by a common factor to simplify computation
– A system is stable if and only if all elements in the first column of the Routh array are positive
– The number of roots in the RHP is equal to the number of sign changes in the first column of the

Routh array
– Note the two special cases:

* One of the elements in the first column is zero
• Replace this element by some small positive value var ϵ and construct the rest of the array
• Take the limit var ϵ→ 0+ and check the sign of the first column

* An entire row is zero
• Take the contents of the row above this, and create an auxiliary polynomial with only

even powers, using the row as coefficients
• e.g. if the row above the zero row has 3 and 12, then the auxiliary polynomial is p(s) =

3s2 + 12
• Differentiate this polynomial and use the coefficients in the derivative as the new contents

for the zero row
• Example: unity feedback system, with a PI controller K + KI

s
, and a plant 1

(s+ 1)(s+ 2)
– For what values of K and KI is the closed-loop system stable?

– H(s) =

(
K + KI

s

) (1
(s+1)(s+2)

)
1 +

(
K + KI

s

) (1
(s+1)(s+2)

) = Ks+KI

s3 + 3s2 + (2 +K)s+KI

– From this we can see that a necessary condition is KI > 0 and K > −2, but this is not a sufficient
condition

– Form the Routh array:

*

Row 3 1 (2 +K)
Row 2 3 KI

Row 1 (6 + 3K −KI)/3
Row 0 KI

– To have all terms in the first row be positive, we require KI > 0 and K >
1
3KI − 2

30

– Note that for this system, even if we took KI = 0, because we’d have a pole at 0 and zero at 0,
they cancel out and the overall system is still stable

Lecture 13, Feb 27, 2024
Control System Performance

• In open-loop control, we control the plant without using feedback from its output
• For open-loop control, Yol = GDolR+GW

– Eol = R− Yol = (1−GDol)R−GW
– Assuming no disturbance so W (s) = 0, we can define the open-loop transfer function

– Tol(s) = Y (s)
R(s) = G(s)Dol(s)

Figure 38: Closed-loop control.

• For closed-loop control, Ycl = T R+GSW −HT V
– Ecl = R− Ycl = (1− T)R−GSW +HT V

* Notice the negative sign in front of the W term, since the output is subtracted from reference
– In this case, V (s) is noise in our sensor measurements, which we separate from W (s)

* W (s) is usually low-frequency
* V (s) is usually high-frequency

– Since we have an LTI system, we can consider the input and sources of noise separately
* Assuming W (s) = V (s) = 0 we can define the closed-loop transfer function

• T (s) = Y (s)
R(s) = G(s)Dcl(s)

1 +H(s)G(s)Dcl(s)
= Tcl(s)

* Assuming R(s) = V (s) = 0 we can define the transfer function for process noise

• Y (s)
W (s) = G(s) · 1

1 +H(s)G(s)Dcl(s)
= G(s)S(s)

• Recall that S(s) is the sensitivity transfer function
* Assuming R(s) = W (s) = 0 we can define the transfer function for measurement noise

• Y (s)
V (s) = −H(s) · Dcl(s)G(s)

1 +H(s)Dcl(s)G(s) = −H(s)T (s)

Stability

• Consider an unstable plant G(s) = b(s)
a(s) , i.e. a(s) has roots in the RHP; how can we design our controller

to make the system stable?
– Let the controller be c(s)

d(s)

– For the open loop control we have Tol = b(s)
a(s)

c(s)
d(s)

* Theoretically we can design c(s) to cancel the unstable roots of a(s), but as previously
mentioned, this is impractical

* We can make the same argument for cancelling bad zeroes (zeroes with small real part causing
large overshoot)
• For a nonminimum-phase zero, we can’t do this at all because we’d need an unstable pole

in the controller

31

* Therefore in practice we can’t use open-loop control to stabilize a plant
– For closed-loop controllers, assume H(s) = 1 for the sensor, then Tcl = b(s)c(s)

a(s)d(s) + b(s)c(s)
* Now we have a lot more options for eliminating the unwanted poles

• Example: Inverted pendulum (segway)

–
{

(mt +mp)ẍ+ bẋ−mplθ̈0 = u

(I +mpl
2)θ̈ −mpglθ −mplẍ = 0

* mt,mp are the masses of the cart and pendulum, I is the moment of inertia of the pendulum, l
is the length of the pendulum, x is the cart’s displacement and θ is the angle of the pendulum
from normal

– G(s) = Θ(s)
U(s) = mpls

((mt +mp)(I +mpl2)−m2
pl

2)s3 + b(I +mpl2)s2 −mpgl(mt +mp)s−mpgbl

– If we assume b = 0 then we get a send order system with ((mt + mp)(I + mpl
2) − m2

pl
2)s2 −

mpgl(mt +mp) in the denominator
* We can immediately tell that this is unstable by the RH criterion since since the s1 term is

missing
– Assume mp = 1 kg, I = 1 kgm2, l = 1 m,mt = 0 then we get G(s) = 1

s2 − 10 = 1
(s+ 3.16)(s− 3.16)

– Consider a controller Dcl(s) = K(s+ γ)
s+ δ

and H(s) = 1
* Choosing γ = −3.16 cancels the RHP pole, but this is impractical
* Choose γ = +3.16 cancels the stable pole, leaving K

(s− 3.16)(s+ δ) +K
* Now we can choose δ and K to move both poles of this second-order system to the LHP

Tracking

• We want to make the output follow the reference input as closely as possible, in effect having a unity
transfer function from reference to output

• For open-loop control, we again have Tol = b(s)
a(s)

c(s)
d(s)

– Designing the controller to cancel the plant’s transfer function is only possible under the constraints:
* The plant needs to be stable (and stable poles cannot be too close to the imaginary axis)

• Trying to cancel out stable poles close to the imaginary axis may make the system too
sensitive and cause unstable transients

* The plant should have no zeroes in the RHP (since we’d need an RHP pole to cancel that)
* The controller transfer function must be proper so it can be physically realized (it must be

causal)
• If the plant is strictly proper, this can be an issue since the controller would have to be

improper
• Digital controllers may be an exception

* The controller cannot go beyond the plant’s actuation limit (the response can’t be too fast, or
excite plant’s resonance modes)
• This will cause the system to be no longer linear

• For a closed-loop control system, most of the same restrictions apply, but we have more freedom to
tune the response

Regulation

• Regulation is the ability of the control system to keep the error small when the input is constant, with
added disturbances/noise

• In the open-loop case, the controller has no influence whatsoever on the effect of W (s) on the output
• For the closed-loop controller: Ecl = (1− T)R−GSW +HT V

– Ecl = 1 +G(s)Dcl(s)(H(s)− 1)
1 +H(s)G(s)Dcl(s)

R− G(s)
1 +H(s)G(s)Dcl(s)

W + H(s)G(s)Dcl(s)
1 +H(s)G(s)Dcl(s)

V

32

– Notice that if D is large, the second term is small so effect of W is small, but the third term gets
closer to 1, so the effect of V is not reduced

– Conversely if D is small we have less effect of V but more of W
– To address this, we can design Dcl(s) to have large values at low frequencies and small values at

high frequencies, since W is often low frequency and V is often high

Sensitivity

• The robustness of the system against variations in the plant behaviour
• Assume that the plant transfer function can change from G(s) to G(s) + δG(s)

• The sensitivity of the (overall) system transfer function T to plant G is defined as ST
G =

δT
T

δG
G

= G

T
· δT
δG

– This is the ratio of the normalized change to the overall transfer function to the normalized change
to the plant transfer function

• For open-loop control:
– Tol + δTol = Dol(G+ δG) = DolG+DolδG = Tol +DolδG = Tol + Tol

G
δG =⇒ δTol = Tol

G
δG

* δTol

Tol
= δG

G
so the sensitivity is 1

– i.e. whatever change happens in the plant, it will be immediately reflected in the entire system
• For closed-loop control, STcl

G = G

Tcl

δTcl

δG
= G

Tcl
· dTcl

dG
– We can show that STcl

G = 1
1 +HGDcl

* This is why we define the sensitivity transfer function as S = 1
1 +HGDcl

* The sensitivity is not 1 but is mitigated by the additional term in the denominator
* The larger the controller Dcl, the more robust it is to changes in the plant

– The complementary sensitivity transfer function is T = GDcl

1 +HGDcl
* Notice that this is just the closed-loop transfer function
* This is named so because for the case of a perfect sensor H(s) = 1, S + T = 1

Lecture 14, Feb 29, 2024
Control System Type

• The reference input R(s) can often be approximated by a time domain polynomial r(t) = Ctk1(t)
– e.g. for position k = 0, for velocity k = 1 and for acceleration k = 2

• The type of a closed-loop controller is the maximum order of the polynomial that the controller can
follow with a constant error

– e.g. if the system can follow a ramp with constant error, then it is a type 1 system
– Any inputs of a higher order will lead to increasing error
– Any inputs of a lower order will lead to zero error

• For unity feedback (i.e. H(s) = 1 or perfect sensors) and no disturbance (W = V = 0), the type of a
system depends on the number of poles that its open loop transfer function, HGDcl = GDcl, has at
the origin

– Ecl(s) = R(s)− Y (s) = 1
1 +GDcl

R = S(s)R(s)

– Let the reference input r(t) = 1
k! t

k1(s) =⇒ R(s) = 1
sk+1

– ess = lim
t→∞

e(t) = lim
s→0

sEcl(s) = lim
s→0

s
1

1 +GDcl

1
sk+1

– First consider if GDcl has no pole at the origin
* With k = 0, ess = lim

s→0
s

1
1 +GDcl

1
s

= 1
1 +GDcl(0) = 1

1 +K0

33

• Therefore for a step input we get a constant steady state error
* For k > 0, ess = lim

s→0
s

1
1 +GDcl

1
sk+1 = 1

1 +GDcl(0) lim
s→0

1
sk

=∞

• For any higher degree input, the error goes to infinity

– Now consider GDcl(s) = GDc(s)
sn

* GDc(s) contains all terms of GDcl(s) except for poles at the origin, so Kn = GDc(0) is a
finite value

* For n = k = 0 (type 0) we’ve shown above that ess → 0
* For n = k ̸= 0, ess = lim

s→0
s

1

1 + GDcl(s)
sn

1
sk+1 = lim

s→0

sn

sk(sn +GDcl(s))
= 1
GDcl(0)

= 1
Kn

* For n > k, ess = lim
s→0

sn

sk(sn +GDcl(s))
= 1
GDcl(0)

lim
s→0

sn−k = 0

* For n < k, ess = lim
s→0

sn

sk(sn +GDcl(s))
= 1
GDcl(0)

lim
s→0

1
sk−n

=∞

• The type of a system is a robust property, i.e. it is independent of the parameters of the system
• For a type 0 system, we can define a position constant, Kp = K0 = lim

s→0
GDcl(s), so ess = 1

1 +K0
(known as the position error constant)

– Note that this is the only one where the error constant is not a simple reciprocal
• For a type 1 system, we can define a velocity constant, Kv = K1 = lim

s→0
sGDcl(s), so ess = 1

K1

• For a type 2 system, we can define an acceleration constant, Ka = K2 = lim
s→0

s2GDcl(s), so ess = 1
K2

• Example: plant G(s) = A

τs+ 1 with controller Dcl(s) = kP + kI

s

– GDcl(s) = A(kP s+ kI)
s(τs+ 1) so this is a type 1 system

– The velocity constant is Kv = lim
s→0

sGDcl(s) = AkI so the steady-state error is 1
AkI

• For non-unity feedback, Ecl(s) = R(s)− Ycl(s) = 1 + (H − 1)GDcl

1 +HGDcl
R = (1− T (s))R(s)

– ess = lim
s→0

s(1− T (s))R(s) = lim
s→0

1− T (s)
sk

– We have to explicitly check the type by finding the largest value of k that keeps ess finite
– However, the relationship between the position/velocity/acceleration constants and the steady

state error still holds
• Typing a system can also be done with respect to regulation, i.e. setting R = V = 0 and finding

the highest order of disturbance W that leads to a finite steady state error; in this case the type is
determined by the number of zeroes in the error transfer function

– Ecl(s) = R(s)− Y (s) = − G(s)
1 +H(s)G(s)Dcl(s)

W =⇒ Ecl(s)
W (s) = − G(s)

1 +H(s)G(s)Dcl(s)
= −Tw(s)

* Note the negative sign in the definition, so that Y (s) = Tw(s)W (s)
– The type is the number of zeroes of Tw(s) at the origin (instead of poles!)
– Let W (s) = 1

sk+1 and Tw(s) = smT̃w(s) where T̃w(0) = 1
Km,w

– −ess = yss = lim
t→∞

y(t) = lim
s→0

sTw(s)W (s) = lim
s→0

T̃w(s)s
m

sk

– Now we can see that m > k =⇒ yss→ 0, m < k =⇒ yss →∞ and m = k =⇒ yss = 1
Km,w

• Generally, the type of a system with respect to tracking can be different than the type with respect to
regulation, so we must specify when stating the type

• We can also define a transfer function in terms of the noise, Y (s)
V (s) = −H(s)T (s) = Tv(s), assuming

R = W = 0

34

– For the noise however the use of a polynomial input is less realistic, since noise is usually very
high in frequency

Lecture 15, Mar 4, 2024
PID Controllers

• For the following analyses we will assume unity feedback, but this is easily extended to other kinds of
feedback

Proportional Control (P)

• The simplest controller simply applies a gain to the error feedback: u(t) = kP ea(t) =⇒ Dcl = kP

• Consider a second order plant G(s) = Kω2
n

s2 + 2ζωns+ ω2
n

=⇒ GDcl(s) = kPKω
2
n

s2 + 2ζωns+ ω2
n

– No poles at the origin in the open-loop transfer function, therefore this is a type 0 system

• Closed loop transfer function: Y (s)
R(s) = GDcl(s)

1 +GDcl(s)
= kPKω

2
n

s2 + 2ζωns+ (1 + kPK)ω2
n

– Notice that the new natural frequency is ω′
n =

√
1 + kPKω

2
n, which is increased

– The new damping ratio is ζ ′ = ζ√
1 + kPK

, which is decreased (obtained by comparing 2ζ ′ω′
n with

2ζωn)
– Increased natural frequency leads to shorter rise time (faster system), but decreased damping leads

to more overshoot
• For R(s) = 1

s
, we have ess = lim

s→0
s

1
1 +GDcl

1
s

= 1
1 + kPK

– The steady-state error in the step response is reduced, but not eliminated entirely
• The same analysis can be made for the disturbance regulation

Integral Control (I)

• The integral controller applies u(t) = kI

� t

0
ea(τ) dτ

– Instead of the error itself, the control signal is proportional to the area underneath the error curve
• The controller transfer function is U(s)

Ea(s) = Dcl(s) = kI

s

• Consider the same second-order plant G(s) = Kω2
n

s2 + 2ζωns+ ω2
n

:

• Closed loop transfer function: Y (s)
R(s) = kIG(s)

s+ kIG(s) = kIKω
2
n

s3 + 2ζωns2 + ω2
ns+ kIKω2

n

= T (s)

– Notice that this system is now third order; the increased order of the system makes it more sluggish,
so the rise time increases and overshoot decreases

– Taking s→ 0 we see that the DC gain is 1, so there is no more steady-state error
– Unlike the second-order system, we can no longer conclude that the system is always stable, since

this is a third-order system
– Using the Routh criterion, we find that kI <

2ζωn

K
is the maximum value of kI for the system to

be stable
* The integral controller can destabilize the system!

– The removal of steady-state error is a robust property, holding regardless of the value of kI and
plant parameters

* We can find the sensitivity transfer function and show that this always goes to 0 as s→ 0

• GDcl(s) = kIKω
2
n

s(s2 + 2ζωns+ ω2
n) ; Ecl(s) = 1

1 +GDcl
R(s)

– There is one pole at the origin, so this is a type 1 system

35

– This can now follow a position setpoint with no error, and a velocity setpoint with constant error
– Note we only get zero error for position setpoints when we have unity feedback!
– The velocity constant is Kv = lim

s→0
sGDcl(s) = kIK =⇒ ess = 1

kIK

Derivative Control (D)

• The derivative controller applies u(t) = kD ėa(t) =⇒ U(s)
Ea(s) = Dcl(s) = kDs

– Derivative control tends to speed up the system, since it anticipates future behaviour of the system

• The closed-loop transfer function is kDKω
2
ns

s2 + (2ζ + kDKωn)ωns+ ω2
n

for the second-order plant

– The additional zero speeds up the system and increases the overshoot
– However, the damping ratio is increased to ζ ′ = ζ + 1

2kDKωn, which decreases the overshoot
– Overall, the combination leads to increased system speed and decreased overshoot
– Furthermore, increased damping ratio and constant natural frequency moves the poles away from

the imaginary axis, enhancing stability

• GDcl(s) = kDKω
2
ns

s2 + 2ζωns+ ω2
n

– No poles at zero, therefore the system is type 0 and maintains constant error for a step input
– The position constant is Kp = lim

s→0
GDcl(s) = 0

– The steady state error is ess = 1
1 +Kp

= 1

* This means that the output ultimately converges to zero, i.e. the derivative controller can’t do
anything about the steady state error

• Generally, derivative control enhances the transient behaviour of the system but does nothing to its
long-term behaviour

• The transfer function for the controller is not causal
– This means we can’t implement it with analog controllers
– We can still implement this digitally, but taking numerical derivatives highly amplifies noise
– Therefore, in reality derivative controllers may not be practical
– Practically, we use another technique called lead functions instead of derivatives

• Derivative control can be used to damp the control response, so we don’t get sharp reactions to suddenly
changing signals

– If there is a sudden jump in the output due to transient effects, there will be a jump in error and
also u(t), which is not desirable

– A derivative feedback path will correct for this

Proportional-Integral Control (PI)

• u(t) = kP ea(t) + kI

� t

0
ea(τ) dτ =⇒ Dcl(s) = kP + kI

s

• The closed-loop transfer function is (kP s+ kI)Kω2
n

s3 + 2ζωns2 + (1 + kPK)ω2
ns+ kIKω2

n
– We still increase the system order, but also added a zero, which counteracts the slowdown effect

* The final system can be faster than the initial plant
– There is a zero that we can use to cancel a stable pole, which would make the system behave like

second-order, making it easier to analyze and control

• GDcl(s) = (kP s+ kI)Kω2
n

s(s2 + 2ζωns+ ω2
n)

– The system is type 1, with Kv = kIK and steady-state error ess = 1
kIK

– Also type 1 in regulation
• Stability criterion: kI <

2ζωn(1 + kPK)
K

36

• Note that we only have two adjustable parameters kP and kI , but there are 3 roots, so our ability to
control the characteristic equation is limit

• Generally used to allow for a faster response compared to a pure integral controller

Proportional-Derivative-Integral Control (PID)

• u(t) = kP ea(t) + kI

� t

0
ea(τ) dτ + kD ėa(t) =⇒ Dcl(s) = kP + kI

s
+ kDs

• Second-order closed loop: (kDs
2 + kP s+ kI)Kω2

n

s3 + (2ζ + kDKωn)ωns2 + (1 + kPK)ω2
ns+ kIKω2

n
– We can fully control the location of the poles since there are 3 poles and we have 3 parameters

• GDcl(s) = (kDs
2 + kP s+ kI)Kω2

n

s(s2 + 2ζωns+ ω2
n)

– The system is type 1, and has kv = kIK =⇒ ess = 1
kIK

• Stability criterion: kI <
(2ζ + kDKωn)(1 + kPK)ωn

K

Example System: DC Servo Motor
• Consider the DC motor system derived earlier
• la

dia
dt + raia = va −Keθ̇m =⇒ (las+ ra)Ia(s) = Va(s)−Kesθm(s)
– This models the back EMF and inductive/resistive effects of the motor coil

• Jmθ̈m + bmθ̇m = Ktia − ηT =⇒ (Jms+ bm)sΘm(s) = KtIa(s)− ηT (s)
– This models torque on the shaft, including friction and an external resisting force

• Va(s) is the input to the system, T (s) is a disturbance, and Θm(s) is the final output
– Va(s) first passes through a transfer function to get Ia(s), then this is multiplied by Kt to get a

torque
– This is summed with the torque from the disturbance and passes through the mechanical transfer

function to get θ̇m

– A final integrator gets us Θm(s)
– The back EMF introduces a feedback path with constant gain Ke

Figure 39: Block diagram for the DC motor system.

• The system has two inputs (Va and T), since it is linear we can consider one at a time to get transfer
functions

– Θm(s)
Va(s) = Kt

s((las+ ra)(Jms+ bm) +KcKt)

– Θm(s)
T (s) = −η(las+ ra)

s((las+ ra)(Jms+ bm) +KeKt)
• We can again make the simplifying assumption that the electrical part of the system operates on a

much faster time scale than the mechanical part, so the inductance la can be taken to 0

37

– Θm(s)
Va(s) =

Kt

ra

s
(
Jms+

(
bm + KeKt

ra

)) = K

s(τs+ 1)

– Θm(s)
T (s) = −η

s
(
Jms+

(
bm + KeKt

ra

)) = C

s(τs+ 1)

– τ = Jmra

bmra +KeKt

– K = Kt

bmra +KeKt

– C = −ηra

bmra +KeKt
– We can now build a much simpler block diagram

Figure 40: Simplified block diagram for the DC motor system.

• Now we close the loop, with a feedback transfer function H(s) = hs and controller Dcl(s)
– We can do this for either a position or velocity controller
– Since we have non-unity feedback, we can no longer only look at the poles to tell the system type

and must use brute force
• For position control: Θm(s)

Θmr(s) = KDcl(s)
s(τs+ 1) +KhDc(s) , Θm(s)

T (s) = −Kη
s(τs+ 1) +KhDc(s)

– Consider a PID controller: Dcl(s) = kP + kI

s
+ kDs

– T (s) = Θm(s)
Θmr(s) =

KkP + KkI

s +KkDs

τs2 + s+KhkP + KhkI

s +KhkDs
=

1
τ (KkDs

2 +KkP s+KkI)
s3 + 1

τ (KhkD + 1)s2 + 1
τKhkP s+ 1

τKhkI

– Tw(s) = Θm(s)
Ts(s) = −Kη

τs2 + s+KhkP + KhkI

s +KhkDs
=

− 1
τKηs

s3 + 1
τ (KhkD + 1)s2 + 1

τKhkP s+ 1
τKhkI

• For tracking: E(s) = Θmr(s)−Θm(s)
= (1− T (s))Θmr(s)

=
(
s3 1

τ (KhkD + 1)s2 + 1
τKhkP s+ 1

τKhkI − 1
τKkDs

2 − 1
τKkP s− 1

τKkI

s3 + 1
τ (KhkD + 1)s2 + 1

τKhkP s+ 1
τKhkI

)
Θmr(s)

– For a step Θmr(s) = 1
s

, so ess = lim
s→0

sE(s) =
1
τKkI(h− 1)

1
τKhkI

= h− 1
h

– We have a constant error, so this system is only type 0
– Even though we have an integral term, the error was not reduced to 0 because the system is not

unity feedback
* If the system was unity feedback, then h = 0 and we would have a type 1 system

• For regulation: E(s) = Θmr(s)−Θm(s)
= −Θm(s)
= −TwT (s)

– For a step disturbance T (s) = 1
s

* ess = lim
s→0

sE(s) = lim
s→0
−Tw(s) = 0

* This system is higher than type 0

38

– For a ramp disturbance T (s) = 1
s2

* ess = lim
s→0
−sTw(s) =

1
τKη

1
τKhkI

= η

hkI

* Therefore this system is type 1 with respect to regulation
* The velocity constant is 1

ess
= hKI

η
• In summary, the system is type 0 with respect to tracking and type 1 with respect to regulation for PID

– For PI, we have the same type 0 in tracking and type 1 in regulation
– For P, we have type 0 in both regulation and tracking

• The same analysis can be applied for velocity control, where our feedback will be taken from Ωm(s),
the speed of the shaft

– Construct the same transfer functions for regulation and tracking
– For velocity control, we also have the same types with the controllers

• In general, for PI and PID control the system type is usually the same

Lecture 16, Mar 7, 2024
PID Controllers, Continued
Ziegler-Nichols Tuning Method

• While we can find gain values through theoretical analysis of a system, we don’t often know the transfer
functions perfectly, so fine-tuning on top of theoretical gains is often needed

• For PID tuning, we rely on mostly heuristic methods (instead of rigorous theoretical methods)
• For a PID controller, do the following in order:

– Use kP to decrease the rise time
– Use kD to reduce the overshoot and settling time
– Use kI to eliminate the steady-state error (while keeping the system stable)

Figure 41: Effect of increasing each of the PID gains.

Figure 42: Process reaction curve.

39

Figure 43: Ziegler-Nichols table.

• The Ziegler-Nichols method is an empirical tuning method that gives a set of gains from empirical
observations of the system only

– This works well for plants that don’t have poles at the origin, or dominant complex poles near the
origin

* This is because these plants are stable, and oscillatory components of the response are not
dominant

– The plant’s behaviour should be well approximated by Y (s)
U(s) = Ae−tds

τs+ 1
* The e−tds is a delay by td
* This is saying that the step response first has some delay L = td , and then rises with an

approximate slope R = A

τ
until it reaches the DC gain of A

* This is known as a process reaction curve and is characterized by L and R
• Given a plant, we can inject it with a step input and measure its response and derive L and R

– The Ziegler-Nichols method gives a set of PID gains based on L and R only

– The gains of a PID controller Dcl(s) = kP

(
1 + 1

TIs
+ TDs

)
can be looked up in the table

• This method doesn’t apply for all plants, especially not those that are unstable
• Theoretically, we can show that Ziegler-Nichols creates a system response with 25% decay ratio (ratio

of the first overshoot to the second overshoot), about equivalent to ζ ≈ 0.21 for a second-order system
– This damping ratio leads to around 50% overshoot
– We can usually reduce kP by 50% after tuning to reduce overshoot/oscillations without affecting

the other properties much
• The method was first derived purely empirically, but it can be shown that the resulting gain values are

close to those derived from optimal control, where we minimize the energy of the controller
• If it’s impractical to observe the system’s step response (e.g. unstable system), we can instead use the

ultimate sensitivity method
1. Close the loop with only a proportional controller with gain kP , so the system is stable
2. Increase kP until the system enters a steady oscillation in response to a step input

– The gain at which this happens is the ultimate gain Ku, and the oscillation period is the
ultimate period Pu

3. Look up values for the system gains based on the ultimate gain and ultimate period from the table
– Again we can often reduce kP by half to reduce oscillations

• Example: heat exchanger; we control a valve which varies the amount of steam into the tank, which
adjusts the temperature of the water at the tank exit

– Typical fluids systems are similar to underdamped second-order systems

– Assume Tm = Tw(t− td) (a delay) so Tm(s)
As(s) = Ke−tds

(τ1s+ 1)(τ2s+ 1)
* as(t) is the amount that we open the valve by

40

Figure 44: Ziegler-Nichols table for ultimate sensitivity.

– Assume that we give a step input to the plant and its output is shown in the figure below
* L ≈ 13 (very short delay)
* R ≈ 1

90
• If we take the tangent when the response is increasing, it takes about 90 seconds to hit 1

* For P control we have kP = 1
RL

= 6.92

* For PI control kP = 0.9
RL

= 6.22,TI = L

0.3 = 43.3
– Assume that we use a P controller and increased the gain until we saw steady oscillations in the

figure below
* Ku ≈ 15.3,Pu ≈ 42
* For P control kP = 0.5Ku = 7.65
* For PI control kP = 0.45Ku,TI = Pu

1.2 = 35.0
* Notice that the PI controller gains derived from this method resulted in a response with more

oscillation

Figure 45: Step response of the example plant.

Feedforward Control

• Using only P doesn’t eliminate steady-state error, but using PI to eliminate the error makes the system
sluggish, decreases damping and degrades stability

• Another way to eliminate steady-state error is to use a feedforward controller, where we first multiply
the reference by the inverse DC gain of the plant

41

Figure 46: Closed-loop step responses from the controller using the step response method, before and after
reducing kP .

Figure 47: Steady oscillation of the example plant from a P controller.

Figure 48: Closed-loop step responses from the controller using ultimate sensitivity, before and after reducing
kP .

42

– Equivalent to having (G−1(s) +Dc(s))Ea(s) instead of just Dc(s)Ea(s) to the plant

– Y (s) = G(s)(Dc(s)E(s)G−1(0)R(s)) =⇒ Y (s)
R(s) = (Dc(s) +G−1(0))G(s)

1 +Dc(s)G(s)

– Now when we take s → 0 we get a DC gain of Dc(0)G(s) +G−1(0)G(0)
1 +Dc(0)G(0) = 1, so there is no

steady-state error
• Practically we don’t always know G−1(0) exactly, which is why we still need a P/PI controller; the

system with just a feedforward is not robust

Figure 49: Feedforward controllers for tracking and disturbance rejection.

Lecture 17, Mar 11, 2024
Root-Locus Design Method

• A graphical method (set of rules) for finding the locus (set of locations on a line) of the roots of a
system’s characteristic equation, as a result of changing parameters

– Allows us to find how the roots of a system move as a result of variation in some system parameter
– e.g. we can find how the poles move as a result of changing the gain, so we can assess the system’s

stability, speed, etc
– The root locus is the set of all locations that a root can take as a result of changing some parameter
– Note the parameter must affect the characteristic equation linearly

• In controls, we use this to find how the roots of the characteristic equation (i.e. the poles) are affected
by changing system gains

• Consider the closed-loop transfer function Y (s)
R(s) = T (s) = Dc(s)G(s)

1 +Dc(s)G(s)H(s)
– Rewrite the characteristic equation into the form of 1 +Dc(s)G(s)H(s) = a(s) +Kb(s) = 0

43

– Then we have 1 +K
b(s)
a(s) = 0 =⇒ 1 +KL(s) = 0 where L(s) = b(s)

a(s) = −1 1
K

* Writing L(s) = b(s)
a(s) is known as the root-locus or Evans form

– Now our poles are locations where L(s) = − 1
K

, which is often a negative real number
– Since the original poles are at Dc(s)G(s)H(s) = −1, KL(s) = Dc(s)G(s)H(s), the open-loop

transfer function
* Sometimes we will just refer to the open-loop transfer function as L(s) and ignore the K

– Most often K is a positive real number since it is a gain, but in rare cases we can also deal with
K < 0

• The roots of the characteristic equation are located where the open-loop transfer function of the system
becomes a real negative value

– Therefore we can plot the location of all possible roots s of the characteristic equation by varying
K; this is the root locus

– The root locus allows us to select the best controller gains and study the effect of potentially
adding additional poles and zeros

• Let b(s) = sm + b1s
m−1 + · · ·+ bm =

m∏
i=1

(s− zi), a(s) = sn + a1s
n−1 + · · ·+ an =

n∏
i=1

(s− pi)

– zi are the open-loop zeroes, pi are the open-loop poles
– Note n ≥ m because L(s) ∝ Dc(s)G(s)H(s) is causal

• Let a(s) +Kb(s) =
n∏

i=1
(s− ri) (note n ≥ m so the summation ends at n)

– The ri are the closed-loop poles; note this is not the same as the open-loop poles
– Our goal is to draw all the possible locations of ri for different values of K

• Example: Dc(s) = K, G(s) = 1
s(s+ c) and consider c = 1; plot the root locus with respect to K

– G(s)Dc(s) = K

s2 + s
=⇒ T (s) = K

(s2 + s) +K
= K

a(s) +Kb(s)

– We have b(s) = 1, a(s) = s2 + s =⇒ m = 0,n = 2, zi = ∅, pi = { 0,−1 } , ri = −1
2 ±
√

1− 4K
2

– L(s) = b(s)
a(s) = 1

s(s+ 1)
– For K = 0, we have two real roots r1 = −1, r2 = 0

* Notice that these are the same as the open-loop poles, since K = 0 =⇒ a(s) +Kb(s) = a(s)
– For K = 1

4, r1 = r2 = −1
2

– For K >
1
4 the roots will be imaginary, and the pair of poles will move up further from the real

axis
– The two directions that the poles move in are the 2 branches

* The branches start at the open loop poles, which are the start points
* The locus has one breakaway point, where the two poles join and separate

• Note breakaway points are when the poles move in from the real axis
– Suppose we want ζ = 0.5, geometrically we can draw out a line at an angle sin−1 ζ = 30° from the

origin, and find where it intersects with the root locus

Figure 50: Example feedback control system.

44

Figure 51: Root locus plot of the example system.

• Example: root locus of the previous system with respect to c

– T (s) = 1
s2 + 1 + cs

= 1
a(s) + cb(s) =⇒

{
b(s) = s

a(s) = s2 + 1
,L(s) = s

s2 + 1
– The roots are zi = 0, pi = ±j

– a(s) + cb(s) = s2 + cs+ 1 = 0 =⇒ r1, r2 = − c2 ±
√
c2 − 4

2
– For c = 0 we have r1, r2 = ±j, giving the start of the plot
– For c = 2 the two roots meet at r1 = r2 = −1
– As c→∞, one of the poles moves to −∞ while the other converges to 0
– The circle on the diagram indicates the location of z1 = 0
– This root locus has 2 start points, 2 branches, and 1 break-in point (where the poles meet and

separate, but they come from the imaginary axis)

Figure 52: Root locus plot with respect to c for the example system.

45

Root Locus Determination
Definition

A root locus is the set of all possible values of s for which the characteristic equation 1 +KL(s) = 0
holds, as the real parameter K varies from 0 to ∞ (sometimes −∞). In controls, the characteristic
equation is typically for a closed-loop system, so the roots of the locus are the system poles.

• If K is real and positive, then L(s) must be real and negative, so its phase must be +180° (positive
locus)

– In rare cases K is negative, then L(s) has a phase of 0 (negative locus)
• We can alternatively define the root locus as the set of points in the s-plane where the phase of L(s)

equals 180° for positive loci, or 0° for negative loci
– This will help us plot the locus

• Recall that for L(s) = b(s)
a(s) the phase of L(s) is equal to the phase of b(s) minus the phase of a(s)

• Consider a test point s0
– To find the phase of L(s0), we need to find the phase of b(s0) and a(s0)

– ∠b(s) =
m∑

i=1
∠(s0 − zi) and ∠a(s) =

n∑
i=1

∠(s0 − pi)

– We need to check that
m∑

i=1
∠(s0 − zi)−

n∑
i=1

∠(s0 − pi) = 180° + 360°(l − 1)

– The phase of each s0 − zi is the angle from each open-loop zero to s0; the phase of each s0 − pi is
the angle from each open-loop pole to s0

– Therefore we take the sum of the angles of s0 from the open-loop zeros, denoted ϕi, and subtract
the sums of the angles of s0 from the open-loop poles, denoted ϕi

Figure 53: Testing whether a point s0 is part of the root locus.

Lecture 18, Mar 14, 2024
Root Locus Determination

• Note due to complex conjugate roots, the locus is always symmetric about the real axis

• Given L(s) = b(s)
a(s) =

∏n
i=1(s− zi)∏m
i=1(s− pi)

, a positive root locus follows the following rules:

1. There are n branches each starting from the open-loop poles; m of these branches will end at the
open-loop zeros of L(s), while the rest go to infinity

46

– K → 0 means a(s) +Kb(s) = 0 is satisfied for a(s) = 0, hence the poles start at the open-loop
poles

– K →∞ means L(s) = b(s)
a(s) = − 1

K
is satisfied for b(s)→ 0 or a(s)→∞

* m poles go to the open-loop zeros where b(s)→ 0
* For the other n − m poles, b(s) does not have a zero, so we need a(s) → ∞ to have
L(s)→ 0
• a(s) will always outgrow b(s) since the degree n > m for causal systems

– When poles and zeros are repeated, there are multiple branches departing from or arriving at
these poles/zeros, one for each degree of multiplicity

2. The segments of the locus on the real axis are always to the left of an odd number of real poles
and zeros (on the real axis)

– For any point on the real axis, the phase angles of conjugate poles or zeros cancel each other,
so we need not consider them

– For poles and zeros on the real axis, having a point to the left of an odd number of them gives
a total phase of 180°

* Having one pole to the right gives a phase from that pole to the point of 180° as required
* A pole and a zero on the right of the point cancel each other out in phase
* Two poles or two zeros add to a phase of ±360° and doesn’t matter

– This gives us all segments of the real axis included in the root locus
3. For the n−m poles that must go to infinity, their asymptotes are lines radiating from the real

axis at s = α at angles ϕl, where:

– α =
∑

i pi −
∑

i zi

n−m
– ϕl = 180° + 360°(l − 1)

n−m
– l = 1, 2, . . . ,n−m is the branch number
– Geometrically this means that the asymptotes evenly divide the 360° and are always symmetric

about the real axis; for an odd number of branches, there is always an asymptote towards the
negative real axis

4. Each branch departs at an angle of ϕl,d =
∑

i

ψi −
∑
i ̸=l

ϕi − 180° from an open-loop pole, where ψi

are the angles from zeros to the pole, and ϕi are angles from the other poles to the pole
– Note this is exactly the phase condition we need for a point to be on the root locus
– If the pole is repeated q times, ϕl,d =

∑
i

ψi −
∑
i ̸=l

ϕi − 180°− 360°(l − 1) for l = 1, 2, . . . , q

* The directions are again spaced evenly apart
– Similarly, the angles of arrival at a zero are ψl,a =

∑
ϕi −

∑
i ̸=l

ψ + 180° + 360°(l − 1)

5. At points where branches intersect (where the characteristic polynomial has repeated roots), if q

branches intersect at the point, then their departure angles are 180° + 360°(l − 1)
q

plus an offset;
together the q branches arriving and q branches departing should form an array of 2q evenly spaced
rays

– If the intersection is on the real axis, use Rule 2 to determine the orientation, otherwise use
Rule 4

– Note that it doesn’t matter which branch breaks out at which angle
6. The breakaway/break-in points of the locus (i.e. intersection points) are among points where

dL(s)
ds = 0
– Note that some of the solutions are not actually the breakaway/break-in points, so we need to

test
– To determine which of the solutions are actually intersection points, we can use geometry or

check with the phase angle method for whether the point is on the locus
– We can also substitute into L(s) and check that we have a negative real result

47

– If the multiplicity of the root of dL(s)
ds = 0 is r, then the multiplicity of the corresponding

root in the closed-loop characteristic equation is q = r + 1 (i.e. r + 1 branches meet)

Figure 54: Illustration of Rule 2.

Figure 55: Justification of Rule 2.

• Example: characteristic equation 1 +K
s+ 1

s(s+ 2)(s+ 3) = 0

– b(s) = s+ 1,m = 1, z1 = −1
– a(s) = s(s+ 2)(s+ 3),n = 3, p1 = 0, p2 = −2, p3 = −3
– From rule 1, there are 3 branches, starting from s = 0, s = −2, s = −3; one of the branches ends

at s = −1 while the others go to infinity
– From rule 2, the segments of the locus on the real axis are at [−1, 0] and [−3,−2]

* Note that the segment [−1, 0] starts at a pole and ends at a zero, so we’ve found an entire
branch

– From rule 3:
* Asymptotes radiate from α =

∑
i pi −

∑
i zi

n−m
= 0− 2− 3 + 1

3− 1 = −2

* Angles are ϕl = 180° + 360°(l − 1)
n−m

= 90° + 180°(l − 1) = 90°, 270°
* We have two asymptotes, one pointing vertically upward and one downward, intersecting the

real axis at s = −2

48

Figure 56: Illustration of Rule 3.

– From rule 5: departure angles are 180° + 360°(l − 1)
2 = 90°, 270°

– From rule 6: dL
ds = −2s3 − 8s2 − 10s− 6

(s(s+ 2)(s+ 3))2 = 0 =⇒ s = −2.46,−0.77± j0.79

* From simple geometric intuition we see that s = −2.46 is the real breakaway point, but we
can also check the other points and find that K is not real

Figure 57: Root locus plot of 1 +K
s+ 1

s(s+ 2)(s+ 3) = 0.

Example: Control Gain Selection

• Consider the open-loop transfer function L(s) = 1
s((s+ 4)2 + 16)

• b(s) = 1,m = 0, zi = ∅ and a(s) = s3 + 8s2 + 32s,n = 3, pi = 0,−4± j4
• In root locus form the characteristic equation is 1 +K

1
s((s+ 4)2 + 16) = 0

• Rule 1:
– We can now mark out the start points of the root locus at s = 0, s = −4± j4
– All 3 branches go to infinity, since we have no zeros

• Rule 2:
– The segment (−∞, 0] on the real axis is on the root locus since p1 = 0; this is the complete branch

for p1
• Rule 3:

– α = 0− 4 + j4− 4− j4
3− 0 = −2.67

– ϕl = 180° + 360°(l − 1)
n−m

= 60°, 180°, 300°
• Rule 4:

49

– ϕ1,d =
∑

i

ψi −
∑
i ̸=1

ϕi − 180° = 0− (−45° + 45°)− 180° = −180°

* This matches what we had earlier; the entire branch of p1 consists of the segment going left to
minus infinity on the real axis

– Similarly ϕ2,d = −45°,ϕ3,d = +45°

• Rule 6: omitted here, but if we take dL
ds = 0 we will find that none of the solutions are points on the

locus, so there are no intersections
• Note that these 6 rules don’t give us the complete shape, but we gain enough of an intuition about the

behaviour of the roots for design

Figure 58: Root locus of L(s) = 1
s((s+ 4)2 + 16) .

• Now we want to select K such that the system behaves like having ζ = 0.5
– This means the phase angle of the closed-loop poles should be sin−1 ζ = 30° (or ϕs0 = 90° + 30° =

12°)
– Using this, we find the intersection with the root locus to find s0

– Now we can find K as K = 1
|L(s0)| = |s0 − s1||s0 − s2||s0 − s3|

Figure 59: Determination of s0 and its associated K value to match ζ = 0.5.

50

• Note that this is a third-order system; the additional pole will increase the system’s rise time and
decrease its overshoot, since it makes the system more sluggish

– When we select ζ = 0.5, we are designing for the worst case of the overshoot

Lecture 19, Mar 18, 2024
Gain Selection from Root Locus

• Once we found a point on the root locus, s0, that meets our requirements, we can find its value of K

• Since L(s) = − 1
K

is the condition for the locus, K = 1
|L(s)| =

|
∏n

i=1(s0 − pi)|
|
∏m

i=1(s0 − zi)|
=
∏n

i=1|s0 − pi|∏m
i=1|s0 − zi|

– These magnitudes of the difference of s0 from the poles and zeros can be obtained geometrically
by measuring the distance of s from the roots and zeroes

• Once we have K, we can now solve for the values of s that make L(s) = − 1
K

to find all the roots of
the closed-loop system (since we only get one root initially)

• To identify s0 = −σ + jω given ζ:
– We know ω

σ
= tan(sin−1 ζ)

– Substitute s0 into L(s) = − 1
K

and solve for the value of K
– This will give us two equations, one for the real part (containing K), and another one for the

imaginary part (which should equal 0)
– Using the relation between σ and ω we can solve for their values using the imaginary equation
– Substitute these values back into the real equation to solve for K

Example: 1-DoF Satellite Attitude Control
• Consider planar angular control of a satellite with a thruster generating a force Fc, and a disturbance
MD causing an unwanted moment

• TC +MD = FCd+MD = Iθ̈ where d is the distance from the centre of mass to the thruster and I is
the satellite’s moment of inertia

• Transfer function: assume MD = 0, so Θ(s)
TC(s) = G(s) = 1

Is2 = A

s2

– This a double-integrator
• Now consider an instrument attached to the satellite via a flexible boom, which can bend and vibrate

– The total system has two degrees of freedom, the rotation of the satellite and the rotation of the
instrument boom

– The boom is modelled as a (rotational) spring-dashpot system between two discs
– Bottom disc (attached to satellite): TC = I1θ̈1 + b(θ̇1 − θ̇2) + k(θ1 − θ2)
– Top disc (attached to instrument): 0 = I2θ̈2 + b(θ̇1 − θ̇1) + k(θ2 − θ1)
– We will simplify the system and assume b = 0

• Laplace transform:
– TC = (I1s

2 + k)Θ1(s)− kΘ2(s)
– 0 = −kΘ1(s) + (I2s

2 + k)Θ2(s)
• For this system, we can have two cases: either we want to control the attitude of the satellite, or the

attitude of the instrument
– Θ1(s)
TC(s) = I2s

2 + k

I1I2s2
(
s2 + k

I1
+ k

I2

)
* Here we are controlling the side attached to the satellite
* This is the case of collocated control: both the actuator and the sensor dynamics are on one

body
– Θ2(s)
TC(s) = k

I1I2s2
(
s2 + k

I1
+ k

I2

)

51

* Here we are controlling the instrument boom
* This is the non-collocated case: the actuator and sensor are not on the body we want to

control
– Notice that the collocated case has 2 zeros, which the non-collocated case misses – we will later

see that the zeros in the first case make the control a lot simpler
• Consider a proportional controller Dc(s) = kP to control only the satellite without the boom, Θ

TC
= A

s2

– Closed loop TF:
kP

1
s2

1 + kP
1
s2

with characteristic equation 1 + kP
1
s2 = 0

– This is already in root locus form; L(s) = 1
s2 =⇒ b(s) = 1, a(s) = s2

– Root locus determination:
1. Two branches, both starting at s = 0, both going to infinity since there are no open-loop zeros
2. No segments on the real axis; since both open-loop poles are at s = 0, for s < 0 we are on the

left of 2 poles, and for s > 0 we are on the left of none
3. Two asymptotes, intersecting at α = 0 and at angles ±90°
4. Branches have departure angles from s = 0 of ±90° (one goes up, one goes down)

– Notice that now all poles are on the imaginary axis – no matter what we do, we get oscillations
with no damping

Figure 60: Root locus when using a proportional controller.

• Now consider using a PD controller Dc(s) = kP + kDs

– Closed loop TF:
(kP + kDs) 1

s2

1 + (kP + kDs) 1
s2

with characteristic equation 1 + (kP + kDs)
1
s2 = 0

– Assume kD = K and kP

kD
= 1, the characteristic equation is 1 +K

s+ 1
s2 = 0

* The derivative gain introduced an open-loop zero to the system
– Root locus:

1. Two branches, both starting at s = 0, one of them going to the zero at s = −1, and the other
going to ∞

2. On the real axis, everywhere to the left of s = −1 is a part of the root locus, since that is to
the left of 2 poles and 1 zero

3. One asymptote along the negative real axis
4. Departure angles from double pole at s = 0 are ±90°
5. Two branches on the real axis meet at ±90°
6. Break-in point at s = −2

– Notice that the additional zeros has “pulled” the root locus to the left, adding damping and

52

allowing us to have a response that does not oscillate forever

Figure 61: Root locus for the PD controller.

• However, in the real world any controller using a derivative gain is non-casual; implementing it in
software will greatly amplify the noise in the system

– To remedy this, we can try to add a denominator to the controller to make it casual
– We add a factor in the denominator of s

p
+ 1

* If we choose p to be large, this will have little effect on the system response, but we can make
the system causal and practically workable

* We make the order of the denominator as small as possible to reduce sluggishness
• PD controller with lead compensator : Dc(s) = kP + kDs

s
p + 1

– Dc(s) = kP + pkP s

s+ p
= (kP + pkD)s+ kP p

s+ p
=

(kP + pkD)
(
s+ kP p

kP +pkD

)
s+ p

– Let kP + pkD = K and kP p

kP + pkD
so Dc(s) = K

s+ z

s+ p
* With the large p, the pole it introduces is very far in the negative real axis, so it has a very

small effect on the overall system
– Characteristic equation: 1 +Dc(s)G(s) = 1 +K

s+ z

s2(s+ p) = 0

– Consider the following cases of p and z:
* z = 1 and p = 12:

• Root locus determination:
1. 3 branches, two starting at s = 0, one starting at s = −12, one branch ends at s = −1,

two at infinity
2. Real axis −12 ≤ s ≤ −1 is on the locus
3. 2 asymptotes centered at −11

2 at angles ±90°
4. Departure angles at s = 0 are ±90°, at s = −12 is 0°
5. Break-in point at angle of ±90°
6. Break-in point at s = −2.3 for the two branches starting at s = 0; two other branches

depart at s = −5.2
• We see that the root locus is close to that of just a PD controller

* z = 1 and p = 4:
• Now the root locus branches are pushed to the right, causing oscillatory responses
• The pole being much closer means that it now starts to matter

* z = 1 and p = 9:

53

• For this in-between value we see that the new pole does impact the root locus, but the
impact is smaller

* As the pole gets closer to the zero, the branches begin to merge together
* The pole should always be placed as far away as possible from the zero, but this has tradeoffs

Figure 62: Root locus for the lead compensator, for z = 1, p = 12.

Figure 63: Root locus for the lead compensator, for z = 1, p = 4.

Lecture 20, Mar 21, 2024
Example: 1-DoF Satellite Attitude Control (Continued)

• Consider the case of collocated control (Θ1), with the previous lead compensator at z = 1, p = 12

– The characteristic equation is 1 +K
s+ 1
s+ 12

(s+ 0.1)2 + 62

s2((s+ 0.1)2 + 6.62) = 0

– The flexible mode adds two additional branches, but since it also has two zeros, the two new
branches go to the new zeros

– Even though the 2 new poles are closer to the imaginary axis and have less damping, because they
are very close to zeros, they are mostly cancelled out

54

Figure 64: Root locus for the lead compensator, for z = 1, p = 9.

– Therefore the response of the system is still mostly dominated by the same two poles as in the
double-integrator case

* The actual response will exhibit very small oscillations (added to the normal response) caused
by the flexible modes
• Since these are almost undamped, they will stay for a very long time

* If the gain is very large, the dominating poles are now on the asymptote
– Overall, the single flexible mode brings lightly damped roots

• Note that in the above we assumed that the open-loop zeroes are the same as the closed-loop zeros,
which is only true when we have a unity feedback system

Figure 65: Root locus plot of the collocated case.

• In the non-collocated case (Θ2), we are missing the two zeros
– Because we don’t have the zeros, the new branches now go to infinity instead of their zeros; the

asymptotes make the poles go into the RHP, introducing instability
– These poles are still barely in the LHP, so the system can still be stable for some gain values, but

it is now unstable for larger gains
– Furthermore these poles are no longer cancelled out by zeros, so they will dominate the system

and introduce very high overshoot
– This is why the non-collocated system is much harder to control

55

Figure 66: Root locus plot of the non-collocated case.

Design for Dynamic Compensation

• Lead compensator: Dc(s) = K
s+ z

s+ p
where z < p

– For a sinusoidal input, its output leads the input (output phase shift is positive)
– Note that due to causality, the output doesn’t start earlier than the input; but with a sustained

sinusoidal input, the phase shift gradually approaches positive
– This comes at a cost of some amplitude
– Approximates PD control; speeds up response (lowering rise time) and decreases overshoot

• Lag compensator: Dc(s) = K
s+ z

s+ p
where z > p

– For a sinusoidal input, the output lags the input (negative phase shift)
– The amplitude of the output is now larger than the input
– Approximates PI control, decreasing steady-state error

• Notch compensator: Dc(s) = K
s2 + 2ζω0s+ ω2

0
(s+ ω0)2

– Attenuates the input around some unwanted frequency, acting as a band-stop filter
– Enhances stability for plants with lightly damped flexible modes (cancels them out)
– Typically has two complex zeros, which can capture problematic poles

* Also has two real poles, but typically ω0 is large, so they are far out in the LHP and usually
has little effect

• Note that all 3 compensator do not have any poles at the origin, so the type of the plant is unchanged
by adding a compensator

• Consider the example plant G(s) = 1
s(s+ 1) , e.g. a servo mechanism

• Example: lead compensation
– We typically start with the simplest possible controller first
– Consider P control: Dc(s) = K

* Since the asymptote is close to the imaginary axis, the damping is very low
* If we want a certain ωn for a certain rise time, we will have a large overshoot
* e.g. for ωn = 2 =⇒ ζ = 0.25

– Now consider PD control: Dc(s) = K(s+ 2)
* Now for the same value of ωn, our poles will be on the circle, and ζ is significantly larger,

improving damping without sacrificing speed
* e.g. for ωn = 2 =⇒ ζ = 0.75

– Now the lead compensator Dc(s) = K
s+ 2
s+ p

56

Figure 67: Root locus plots for a P (solid line) and PD (dashed line) controller.

Figure 68: Root locus plots for different lead compensator gains.

57

* As we’ve seen previously, depending on the location of the pole relative to the zero, we can
get very different behaviour

* For small K, the lead compensator approximates PD control well, regardless of where the pole
is

* For large p, the lead compensator also behaves like PD control
* The additional pole slightly lowers damping (for the same ωn we see that ζ is smaller)

• This effect is negligible for low K and large p
* Typically, we place the zero near the desired closed-loop ωn (0.25 to 1 times ωn) and the pole

5 to 25 times the value of the zero
• The further p is, the closer we get to PD; we get slightly better performance, but noise

will increase

Lecture 21, Mar 25, 2024
Design for Dynamic Compensation (Continued)
Lead Compensator

• Example: G(s) = 1
s(s+ 1) ; design a lead compensator for the position control system to provide an

overshoot of no more than 20% and rise time of no more than 0.3 seconds
– This gives us a required damping ratio of ζ ≥ 0.5 and ωn ≥ 6 rad/s; we will choose ωn ≥ 7 for

some margin
– Initial trial with Dc(s) = K

s+ 2
s+ 10

* We start with a zero at s = −2, since this is in the range of 1/4 to 1 times the natural
frequency we want

* Start with a pole of 10, at 5 times the location of the zero (recall rule of thumb was 5 to 25
times)

* By drawing out the circle corresponding to ωn = 7 and the angle for ζ = 0.5, we find a small
segment on the root locus that gives the desired response

* Note that the additional pole on the real axis is very close to a closed-loop zero (which are
the same as the open-loop zeros due to unity feedback), so its effects are small

* However, when we plot the response for K = 70 we see an overshoot of 22%
• From here, we can try to lower K, but this is not the best option
• We can increase the pole slightly, so the response is closer to that of a PD controller
• We could also try to increase the zero, but we chose to increase the pole first since we

have more range on it
– Second trial with Dc(s) = K

s+ 2
s+ 13

* Now with a gain of K = 91 we have a controller with rise time of 0.19 seconds and overshoot
of 17%

• In general when designing a closed-loop system, we typically start with a lead compensator:
1. Determine where the closed-loop roots need to be to meet the desired physical response character-

istics
2. Create a root locus with only a proportional controller
3. If more damping is needed, choose z to be 1/4 to 1 times the desired ωn and pick p to be 5 to 25

times z
4. If less damping is needed, decrease p; if more damping is needed, increase p and/or decrease z

– The ratio p/z should be as low as possible (less than 25) in order to minimize the effects of
noise from a derivative controller

5. When values of z and p are found so that the root locus passes through the desired region, select
the value of K and check the step response

6. Determine if the value of K meets the steady-state error requirements; if a value of K that meets

58

Figure 69: Root locus for z = −2, p = −10.

Figure 70: Root locus for z = −2, p = −13.

59

the requirements cannot be found, add integral control or a lag compensator
• The lead compensator will make the steady-state error worse (for the same value of K)

– The position constant is Kp = lim
s→0

K
s+ z

s+ p
G(s) = K

z

p
lim
s→0

G(s)
– Since p > z, overall this makes Kp smaller, making ess larger
– In order to reduce the steady-state error again, we want to introduce another term s+ z2

s+ p2
where

z2 > p2, so the position constant is increased
* This is the idea behind the lag compensator

Lag Compensator

• Lag compensation has a similar effect as an integrator in decreasing the steady-state error at low
frequencies, without affecting the transient response created by the lead compensator

– The position/velocity/acceleration constant is increased by a factor equal to z/p per the above
discussion

– The ratio z/p is typically between 3 to 10; anything more than this could affect the transient
response

– We choose the value of p and z to be extremely small (100-200 times smaller than the closed-loop
ωn), so s+ z

s+ p
≈ 1 for any nonzero s, therefore it won’t affect the transient response

– Note that we need to be mindful of the resolution of our controller; if z and p are too small, it
may not be practically implementable

• Example: Increase Kv for the previous system to decrease the steady-state error, without changing its
transient response

– Lag compensator Dc2(s) = s+ z

s+ p
where z > p

– Uncompensated Kv = lim
s→0

sDc1(s)G(s) = 14 so ess = 1
14

– Suppose we want to increase Kv to 70, so we need z

p
= 70

14 = 5
– Choose z = 0.05, p = 0.01
– On the root locus, this adds a very small circle near the origin; the overall root locus is almost

unchanged

Figure 71: Root locus with lead and lag compensation.

• Lag compensator design process:
1. Determine the amount of gain amplification we want to achieve the desired error constant, and

determine the ratio z/p
2. Select the value of z to be approximately 100 to 200 times smaller than the system’s dominant

natural frequency

60

3. Plot the resulting root locus and verify that it is still satisfactory and adjust z and p as necessary
4. Plot the step input to verify that the time domain response is still satisfactory

– If the slow root of the lag compensator is too slow, increase z and p while keeping their ratio
constant

– Note that the closer z and p are to the dominant poles, the more effect they will have on the
transient response

Notch Compensator

• A notch compensator is used to dampen the oscillation at some specific resonant frequency, e.g. due to
a flexible mode in non-collocated control

– The overall system response will have been handled by the other controllers; the notch compensator
acts like a filter

– Has form s2 + 2ζω0s+ ω2
0

(s+ ω0)2

– The two real zeros cancel out the undesirable oscillatory poles in the system
– The real poles are introduced so that the controller is causal and has a DC gain of 1, so the

steady-state response is unaffected
– Choose ω0 to be very large as to not affect the transient response

• The position of the zero relative to the undesirable pole needs to be chosen to ensure that the resulting
root locus is entirely in the LHP

– Whether the zero should above or below the pole depends on the system
• Example: assume that the system has a flexible mode, so G(s) = 1

s(s+ 1) ·
2500

(s2 + s+ 2500)
– The poles that were added are approximately −0.5 ± j50; they are dominant and very lightly

damped
– Assume that we have the same lead-lag compensator from before

– Add notch compensation Dc3(s) = s2 + 2ζω0s+ ω2
0

(s+ ω0)2 = s2 + 0.8s+ 3600
(s+ 60)2

* The zeros are at approximately −0.4± j60
• Notice that zero is close to the pole but not exactly on it
• The imaginary part is above the undesirable pole so that the root locus is entirely in the

LHP
• Typically the zero is chosen to be a little bit closer to the imaginary axis than the

undesirable pole
* The new poles we introduced at s = −60 are very far so they do not have any effect

• In practice, a notch compensator will often increase the overshoot, so we may need to iterate on the
design

• Note practically, we design lead first, then notch, and finally lag, because the notch compensator affects
the design of the lag compensator

Example: Quadrotor Drone Control (Pitch Axis)

• G(s) = 1
s2(s+ 2)

– The double integrator represents a delay
• From the root locus we can see that with a proportional controller, the system is unstable for any value

of K, since we have two branches going into the RHP
– Adding a lead compensator Dc(s) = K

s+ 1
s+ 10 pushes the root locus to the left, making the system

stable
• Consider non-collocated behaviour where there is flexibility between the actuators and the body, so we

introduce a flexible mode
• G(s) = 1

s2(s+ 5) ·
225

((s+ 0.1)2 + 152)
• Goal: tr ≤ 1 s,Mp ≤ 40%, ts ≤ 10 s,Ka ≥ 12 rad without high frequency oscillations in response

61

Figure 72: Root locus with flexible mode, lead, lag and notch compensation.

Figure 73: Step response with and without notch compensator.

62

– We can recognize that the system is type 2 due to the s2 in the denominator, and adding
compensators does not change the system type

• This translate to ωn ≥ 1.8 rad/s, ζ ≥ 0.3,σ ≥ 0.46; we also need a lag and notch filter
• Proportional controller is again unstable with any gain
• Lead compensator: choose z = 0.5 (approximately 0.3ωn), p = 10 (20 times the zero) so Dc1(s) = s+ 0.5

s+ 10
– From the root locus we see that K = 80 is appropriate
– Plotting the step response gives us a satisfactory overshoot and rise time

• Notch compensator: Dc3(s) = (s+ 0.05)2 + 162

(s+ 16)2

– This cancels out the unwanted oscillations but slightly affects the transient response
– Modify the lead compensator slightly to compensate
– Ka = lim

s→0
s2Dc1(s)Dc3(s)G(s) = 0.58

• Lag compensator: need a ratio z

p
≥ 12

0.58 = 20.7 so choose Dc2(s) = s+ 0.02
s+ 0.001

– Modify the control gain as necessary

Lecture 22, Mar 28, 2024
Frequency Response Design Method

• For a (stable) LTI system G(s), the steady-state response to an input u(t) = A sin(ω0t)1(t) is given by
yss(t) = A|G(jω0)| sin(ω0t+ ∠G(jω0))

– The response is a sinusoid of the same frequency, scaled by a factor of |G(jω0)| (the magnitude
of the transfer function, known as the gain or amplitude/magnitude ratio), with a phase shift of
∠G(jω0) (the phase of the transfer function)

– Knowing the magnitude M(ω) and phase ϕ(ω) of G(jω) for all possible frequencies ω fully specifies
the transfer function

• In general, the complete response is the sum of a number of exponentials and a sinusoid; since the
system is stable, all the exponentials decay to 0 as t→∞ and we are only left with the sinusoid

• Example: RC circuit, output y(t) is the voltage across the capacitor, input Ku(t) is an input voltage
that is sinusoidal

– RC
dy
dt + y(t) +Ku(t) =⇒ dy

dt + ky(t) = u(t) where k = 1
RC

, assuming K = RC

– G(s) = 1
s+ k

– Given u(t) = sin(10t)1(t), U(s) = 10
s2 + 100

– At s = j10, |G(j10)| = 1√
12 + 102

and ∠G(j10) = − tan−1
(

10
1

)
– Therefore the response is y(t) = 1√

101
sin(10t− tan−1(10))

• Example: lead network Dc(s) = K
Ts + 1
αTs + 1 for α < 1

– Note that this is mathematically identical to the form of the lead compensator we had before, but
this form is more common and convenient for frequency response design

* The zero is at 1
T

, the pole at 1
αT

and the gain is K
α

– Frequency response: Dc(jω) = K
Tjω + 1
αTjω + 1

– Gain: M = |K|
√

1 + ω2T 2
√

1 + α2ω2T 2

– Phase: ϕ = tan−1(ωT)− tan−1(αωT)
– For ω → 0, we have M → |K| and ϕ→ 0

63

– For ω →∞ we have M →
∣∣∣∣Kα
∣∣∣∣ and ϕ→ 0

Figure 74: Bode magnitude and phase plots for the lead compensator, for K = 1,α = 0.1,T = 1.

• The gain and phase for a range of values of ω can be summarized in a Bode plot
– The top plot is the magnitude plot; the bottom plot is the phase plot
– The bode plot is log-log for magnitude and semi-log for phase

* Using a log-log plot for gain allows us to cover a wide range of ω and gain, and also allows
us to simply add up the magnitude plots of transfer functions to get the final plot, since
multiplication of gains is just addition of logs

– The vertical axis of the magnitude plot often uses decibels, dB = 20 log|G(jω)|
• Note in MATLAB, bode(sys, w) gives [mag, phase], which we can plot to get the Bode plot

– Use logspace() to get the points for w

System Behaviour From Frequency Response

• The gain and phase of the system’s frequency response completely determines the behaviour of the
system; we design using it just like we design using the root locus

– The root locus is to the root locus design method as the Bode plot is to the frequency design
method

• Typical closed-loop systems exhibit a low-pass filter behaviour
– The gain is close to 1 at lower frequencies, i.e. the output follows the input well
– Beyond a certain frequency, the gain deviates from 1; for most systems, it increases first before

decreasing
– For most systems when the frequency gets very large the gain approaches 0, i.e. the output stops

following the input at all
• The bandwidth ωBW is defined as the highest frequency ω where the output still tracks the (sinusoidal)

input in a satisfactory manner
– Traditionally we define this to be when the gain hits

√
2/2 = 0.707

– This is known as the half-power point; if the gain is a voltage gain, then at this point, the power of
the response will be only half

– A higher bandwidth means a faster response – the larger ωBW is, the larger ωn is and the shorter
our rise and peak times

• The resonant peak Mr is the maximum value of the amplitude ratio
– Mr has a direct relationship with ζ, so we can estimate the damping and overshoot of the system

64

from Mr

• When we design a controller, we examine its bode plot and tune the gains to get the desired bandwidth
and resonant peak, just like we identify pole locations on a root locus

Figure 75: Definitions of bandwidth and resonant peak.

Lecture 23, Apr 1, 2024
Plotting Bode Plots

• Consider a general transfer function G(s) = K
(s+ z1) . . . (s2 + 2ζ1ωn1s+ ω2

n1) . . .
(s+ p1) . . . (s2 + 2ζaωnas+ ω2

na)
– zi and pi are real; the complex poles and zeros are in the quadratic factors, represented by their

natural frequencies and damping ratios

• Rearrange as G(s) = K0s
n

(τ1s+ 1)(τ2s+ 1) . . .
((

s
ωn1

)2
+ 2ζ1

(
s

ωn1

)
+ 1
)
. . .

(τas+ 1)(τbs+ 1) . . .
((

s
ωna

)2
+ 2ζa

(
s

ωna

)
+ 1
)
. . .

– We factor out the poles and zeros at the origin to sn, where n could be positive or negative
– τ1, τ2, . . . correspond to the real zeros, τa, τb, . . . correspond to the real poles
– ωn1,ωn2, . . . and ζ1, ζ2 correspond to the complex zeros; ωna,ωnb, . . . and ζa, ζb correspond to the

complex poles

– Substitute s = jω: G(s) = K0(jω)n

(jωτ1 + 1)(jωτ2 + 1) . . .
((

jω
ωn1

)2
+ 2ζ1

(
jω

ωn1

)
+ 1
)
. . .

(jωτa + 1)(jωτb + 1) . . .
((

jω
ωna

)2
+ 2ζa

(
jω

ωna

)
+ 1
)
. . .

– This is the Bode form of the transfer function
• The Bode form is a composite of simpler transfer functions of the 3 classes:

1. K0(jω)n where n ∈ Z
2. (jωτ + 1)±1 (if the power is 1, then it is numerator class 2, while power -1 is denominator class 2)

3.
((

jω

ωn

)2
+ 2ζ

(
jω

ωn

)
+ 1
)±1

(power 1 → numerator class 3; -1 → denominator class 3)

• To find the bode plot of a composite transfer function, we plot the Bode plots of each of the individual
classes, and sum them up, since multiplication is addition of logs

• Class 1: K0(jω)n

– Magnitude: logK0|(jω)n| = logK0 + n logω
* The magnitude plot is a straight line with slope n (or n times 20 decibels per decade)

• For ω = 1, the value of the gain is logK0
* For very low values of ω we will see that this is the only class that affects the slope of the

Bode plot
– Phase: ∠K0(jω)n = n · 90°

65

* The phase plot is a constant value, determined by n

Figure 76: Magnitude plot of (jω)n.

• Class 2: (jωτ + 1)±1

– For ωτ ≪ 1, (jωτ + 1)±1 ≈ 1
– For ωτ ≫ 1, (jωτ + 1)±1 ≈ (jωτ)±1

– The break point is defined as ω = 1
τ

– Magnitude:
* Below the break point, the gain is approximately a constant 1
* Above the break point, the gain behaves like a class 1 term of τ±1(jω)±1

• The slope is a constant 1 or -1 (or ±20 decibels per decade) for this asymptote
• The intercept is at τ±1

* At the break point, the gain is a factor of 1.41 (or 3 decibels) above for numerator class 2, or
0.707 (or -3 decibels) below for denominator class 2
• At the break point, |jωτ + 1|±1 = |j + 1|±1 =

√
2

±1

– Phase:
* Below the break point, the phase is ∠1 = 0°
* Above the break point, the phase is ∠(jωτ)±1 = ±90°
* At the break point, the phase is ∠(j + 1)±1 = ±45°
* The middle asymptote intersects the lower and upper asymptotes at 5 times above and below

the break point
* At the intersection of asymptotes, the actual phase deviates from the asymptotes by about
∠(j/5 + 1)±1 = ±11°

– For very low frequencies, class 2 gives a gain of 1 and phase of 0, so it has no effect on the Bode
plot of the composite function

* Rule of thumb is to ignore for ω a factor of 10 or more below the break point

• Class 3:
((

jω

ωn

)2
+ 2ζ

(
jω

ωn

)
+ 1
)±1

– The break point is ω = ωn

– For ω ≪ ωn,
((

jω

ωn

)2
+ 2ζ

(
jω

ωn

)
+ 1
)±1

≈ 1

66

Figure 77: Magnitude plot of (jωτ + 1) for τ = 10.

Figure 78: Phase plot of (jωτ + 1) for τ = 10.

67

– For ω ≫ ωn,
((

jω

ωn

)2
+ 2ζ

(
jω

ωn

)
+ 1
)±1

≈
(
jω

ωn

)±2

– Magnitude:
* For ω ≪ ωn the gain is again approximately 1
* For ω ≫ ωn the gain behaves like a class 1 term of 1

ω±2
n

(jω)±2

• The slope is a constant ±2 (or ±40 decibels per decade)
* The transition between the two asymptotes depends on ζ

• At the break point, the magnitude is a factor of (2ζ)±1 above/below a gain of 1
– For ω = ωn, (j2 + 2ζ + 1)±1 = (2ζ)±1

• For a power of +1 the magnitude goes down at the break point, while for −1 the magnitude
goes up

* The peak has a magnitude of 1
2ζ
√

1− ζ2
and occurs at ωr = ωn

√
1− 2ζ2

• This can be obtained by differentiating the expression for the magnitude
• For values of ζ > 1√

2
, the resonant peak does not exist

• The smaller ζ is, the closer the peak is to ωn and the larger the magnitude of the peak
– Phase:

* For ω ≪ ωn, ∠1 = 0°
* For ω ≫ ωn, ∠(jω)±2 = ±180°
* For ω ≈ ωn, ∠(±j2ζ) = ±90°
* The smaller the ζ, the faster the phase will transition between 0° and ±180°

• For ζ = 0, the transition is essentially a step function and the change is an instantaneous
jump

• For ζ = 1, we just have a multiplication of two class 2 terms with the same break point

Figure 79: Magnitude plot of
((

jω

ωn

)2
+ 2ζ

(
jω

ωn

)
+ 1
)−1

.

• Process for plotting a composite Bode plot:
1. Manipulate the transfer function into Bode form to identify all break point frequencies
2. Plot the low-frequency asymptote: Determine the value of n for the class 1 term and plot its

magnitude as a line with slope of n passing through K0 at ω = 1
3. Draw the asymptotes for the magnitude plot: Extend the low-frequency asymptote until the next

break point, then change the slope by ±1 or ±2 depending on the class of the break point and

68

Figure 80: Phase plot of
((

jω

ωn

)2
+ 2ζ

(
jω

ωn

)
+ 1
)−1

.

whether it is numerator or denominator; repeat until all break points are accounted for
4. Correct the magnitude values at break points:

– For class 2, increase the magnitude by a factor of 1.41 (numerator) or decrease by a factor of
0.707 (denominator)

– For class 3, change by a factor of (2ζ) (numerator) or a factor of 1
2ζ (denominator)

– Note these values may change of break points are close together; if break points are less than
a factor of 10 away, the break point offsets are inaccurate

5. Plot the low-frequency asymptote of the phase curve: ϕ = n · 90°
6. Draw the horizontal asymptotes for phase: Change the value of the phase asymptote by ±90° for

class 2 break points and ±180° for class 3 break points for each break point in ascending order
7. Determine intermediate asymptotes for each break point
8. Add each phase curve together graphically

• Example: G(s) = 2000(s+ 0.5)
s(s+ 10)(s+ 50)

– G(s) = 2s−1
(

s
0.5 + 1

)(
s

10 + 1
) (

s
50 + 1

)
– Class 1: 2(jω)−1

– Class 2:
(
jω

0.5 + 1
)

with break point 0.5,
(
jω

10 + 1
)−1

with break point 10,
(
jω

50 + 1
)−1

with

break point 50
– Steps:

1. Bode form: 2(jω)−1
(

jω
0.5 + 1

)(
jω
10 + 1

) (
jω
50 + 1

)
2. From the class 1 term: At ω = 1, the gain is 2; the slope is -1
3. Continue the slope of −1 until the first break point 0.5, then increase slope by 1 (to 0); next

break point is at 10, decrease slope by 1 (to -1); next break point is at 50, decrease slope by 1
(to -2)

4. Increase magnitude by a factor of 1.41 at break point 0.5; decrease by a factor of 0.707 at
break point 10; decrease by a factor of 0.707 at break point 50

5. Low-frequency phase asymptote: ϕ = −90°
6. Increase phase by 90° at ω = 0.5 (to 0°), decrease by 90° at 10 (to −90°), decrease by another

69

90° at 50 (to −180°)
7. Draw the phase curves for the individual terms
8. Graphically add the individual phase curves to obtain the final phase plot

Figure 81: Magnitude plot of G(s) = 2000(s+ 0.5)
s(s+ 10)(s+ 50) .

Figure 82: Phase plot of G(s) = 2000(s+ 0.5)
s(s+ 10)(s+ 50) .

• Example: G(s) = 10
s(s2 + 0.4s+ 4)

1. Bode form: G(jω) = 2.5(jω)−1 1((
jω
2
)2 + 2(0.1)

(
jω
2
)

+ 1
)

2. Class 1 term: 2.5(jω)−1

– First asymptote with slope of -1 having a value of 2.5 at ω = 1
3. Class 3 term: ωn = 2 and ζ = 0.1, denominator

– Decrease the asymptote slope by 2 at ω = 2
4. Increase magnitude by a factor of 1

2(0.1) = 5 at the break point, and plot the magnitude

5. Low-frequency asymptote at ϕ = −90°

70

6. Decrease phase by −180° at ω = 2 (to −270°)
7. Draw the phase plot

Figure 83: Magnitude plot of G(s) = 10
s(s2 + 0.4s+ 4) .

Figure 84: Phase plot of G(s) = 10
s(s2 + 0.4s+ 4) .

Lecture 24, Apr 4, 2024
System Response from Frequency Response

• Consider a unity feedback system with open-loop transfer function L(s) = KG(s)
• A typical root locus starts with all poles on the left hand side, and as K increases, the locus crosses the

imaginary axis at some point and the system becomes unstable
• The Bode plot of KG(jωc) has a magnitude plot that is simply shifted vertically, and a phase plot that

is identical as G(jωc)
– Multiplying by K increases the magnitude by a constant factor at all frequencies and has a phase

of 0
• The conditions for marginal/neutral stability are |KG(jωc)| = 1 and ∠G(jωc) = −180°

– These are the same conditions as having the closed-loop poles being on the imaginary axis for a
root locus

– We can look at the phase plot to see the ωc that gives a phase of −180°, and then look at the
value of K that gives magnitude 1 at ωc

• For most systems, decreasing K from the neural stability value will make the system stable, while
increasing it will make the system unstable

71

Figure 85: Typical closed-loop system and root locus.

Figure 86: Open-loop Bode plot for the example system.

72

– Therefore if |KG(jω) < 1| at ∠G(jω) = −180° then the system is stable; otherwise it is unstable
– Note this does not apply if the open loop Bode plot crosses |KG(jω)| = 1 more than once

* For such systems we need to use techniques to shift the plot so it crosses unity only once
• The degree of stability is how far we are from the value of K that gives marginal stability; we measure

this through two quantities:
– Gain margin (GM): the factor by which K can be increased before the system becomes unstable

* On a Bode plot, this is how much we can move the magnitude plot up before we reach
|KG(jω)| = 1

* This is the value of 1
|KG(jω)| where ∠G(jω) = −180°

• On a decibel scale this is the vertical distance between the value of the magnitude plot
and the 0 decibel line

* On a root locus, this is the ratio of the K value that puts the closed-loop poles on the imaginary
axis and the K value that gives the poles given

* GM < 1 (or negative in decibels) indicates an unstable system
– Phase margin (PM): the amount by which the phase G(jω) exceeds −180° (less negative) when
|KG(jω)| = 1

* On a Bode plot, find the value of ω that gives a magnitude of 1, and the phase margin is the
value of the phase at this point minus −180°

* PM < 0 indicates an unstable system
• A value of PM = 30° is typically regarded as the lowest value for a safe stability margin
• In design we try to go for an ideal value of PM = 90° but usually we have to compromise

* The PM for any value of K can be obtained directly from the Bode plot for G(jω) (i.e. K = 1),
by finding the ω that gives |G(jω)| = 1/K and taking the phase at this frequency, subtracting
−180°
• This is because |G(jω)| = 1/K =⇒ |KG(jω)| = 1
• We can also go backwards; for a value of PM, note the required ω, find the value of |G(jω)|

and take K = 1/|G(jω)|
• The (gain) crossover frequency ωc is the frequency at which the open-loop magnitude is unity

– This is highly correlated with the closed-loop bandwidth and hence the system response speed
– PM = ∠L(jωc)− (−180°)

• PM is more commonly used than GM in practice:
– For a typical second order system GM =∞ since phase reaches −180° only at ω →∞, at which

point |G(jω)| → 0
– PM is also closely related to the system damping ratio

• Consider G(s) = ω2
n

s(s+ 2ζωn) =⇒ T (s) = ω2
n

s2 + 2ζωns+ ω2
n

, a typical closed-loop system

– We can derive PM = tan−1

 2ζ√√
1 + 4ζ4 − 2ζ2


* G(jω) = ω2

n

(jω)(jω + 2ζωn)

* |G(jωc)| = 1 =⇒ ω2
n

ωc

√
ω2

c + 4ζ2ω2
n

= 1 =⇒ ω2
c = −2ζ2ω2

n ±
√

4ζ4ω4
n + ω4

n =⇒ ωc =

ωn

√√
1 + 4ζ4 − 2ζ2

73

* PM = ∠G(jωc)− (−180°)
= ∠ω2

n − ∠(jωc)− ∠(jωc + 2ζωn) + 180°

= 0− 90°− tan−1
(

ωc

2ζωn

)
+ 180°

= 90°− tan−1
(

ωc

2ζωn

)

= 90°− tan−1


√√

1 + 4ζ4 − 2ζ2

2ζ


= tan−1

 2ζ√√
1 + 4ζ4 − 2ζ2


– For PM < 65°, we can use a linear approximation ζ ≈ PM°

100
* This is used as a rule of thumb for other systems as well

– The resonant peak Mr and overshoot Mp can be obtained from PM as well since both are related
to ζ

* This can also serve as a rough estimate for systems other than the second-order closed-loop
system we have

Figure 87: Relationship between ζ and PM.

Figure 88: Relationship between Mp and Mr and PM.

74

• For any stable minimum phase system (i.e. no poles or zeros in the RHP), the phase of G(jω) is uniquely
related to the magnitude of G(jω)

– ∠G(jω0) = 1
π

� ∞

−∞

dM
du W (u) du where


M = log|G(jω)|
u = log(ω/ω0)

W ≈ π2

2 δ(u)
* The phase is related to the slope of the magnitude plot on a log-log scale, near the frequency
ω0 we want to study

* δ(u) is a weighting function (plot shown below)
• This applies a much higher weight to values near u = 0
• Even though the integral goes to infinity on both sides, the weighting makes it insignificant

– If the slope of the gain is nearly constant around ω0, we can take out dM
du

– ∠G(jω0) ≈ π

2
dM
du = n · 90° if dM

du is constant for a decade around ω0

Figure 89: Plot of the weighting function.

• This means that if we can manage |KG(jω)| to have a constant slope of -1 for a decade around the
crossover frequency ωc (i.e. where |KG(jω)| = 1), we will get a phase of −90° at ωc, which gives a PM
of 90°, guaranteeing good stability of the system and a high ζ to reduce overshoot

– This is the rule of thumb for design
– We can adjust the value of K to shift the plot so that the slope is -1 at unity gain, or we can add

compensators to change the slope for the same value of K

Example: Spacecraft Attitude Control

• Find a suitable KDc(s) to provide Mp < 15% and a bandwidth of 0.2 rad/s for the plant G(s) = 1
s2

and determine the frequency where the sensitivity function |S| = 0.7
– 1
s2 is class 1, so the phase plot is a constant −180°, and the system is always unstable; the slope
of the magnitude plot is -2 which is also not good

• We want to increase the slope, so we want to add a numerator class 2 term
– Use a PD controller: KDc(s) = K(TDs+ 1)

• Start with the bandwidth of 0.2 rad/s which gives us a hint for ωc; we choose ωc = 0.2
• The break point of the controller is 1

TD
– We need to put this break point sufficiently before ωc, so we have a sufficiently constant slope

around ωc

– Choose the break point to be 1/4 of ωc, so have ω1 = 0.05 and TD = 20

75

• Plot |DcG(jω)| for K = 1, and notice the magnitude at 0.2 – in this case we have 100
• Therefore we choose K = 1

|DcG(jωc|
= 0.01

• Validate our assumption that the bandwidth is around 0.2:
– |T (jω)| = |KDcG|

|1 +KDcG|
– From the plot we can see that the bandwidth is around 0.25 (when magnitude reaches around

0.7), which is close to ωc

• For a unity feedback system, S(s) = E(s)
Θ(s) (in general 1− T (s))

– We want the sensitivity function to be low at the frequencies we work with, so the system is
insensitive to an error in the reference

• The disturbance rejection bandwidth, ωDRB, is the max frequency at which the disturbance rejection
(i.e. sensitivity S) is below a certain amount, usually -3 decibels

– We always want to maximize this

Figure 90: Bode magnitude plots of the closed-loop transfer function and sensitivity transfer function.

Lecture 25, Apr 8, 2024
Dynamic Response from Frequency Response

• For common systems, typically the open-loop transfer function has |KG(jω)| ≫ 1 for ω ≪ ωc and
|KG(jω)| ≪ 1 for ω ≫ ωc

– Therefore at ω ≪ ωc, |T (jω)| ≈ 1, and at ω ≫ ωc, |T (jω)| ≈ |KG(jω)|
– The magnitude of the closed-loop gain near ωc is closely related to the phase margin

* Note again that this peak is not exactly at ωc

– e.g. for K = 1, if PM = 45°, then ∠G(jωc) = −180° + PM = −135°, and |G(jωc)| = 1 by

definition, then |T (jωc)| =
∣∣∣∣ G(jωc)
1 +G(jωc)

∣∣∣∣ = 1
|
√

(1 + cos(−135°))2 + sin2(−135°)|
= 1.31

• By the above calculation, PM = 90°, then ωc = ωBW exactly; if PM < 90°, then ωc ≤ ωBW ≤ 2ωc

– ωBW is always within 1 octave of ωc

– Bandwidth is roughly equal to the natural frequency of the system, again within 1 octave
– We typically define a closed-loop system by its bandwith and phase margin

* ζ ≈ PM°
100 for PM < 65° and ωn ≈ ωBW

• We can find system type in the frequency response; for a unity feedback system:
– A type 0 system’s open-loop magnitude plot starts with a slope of 0 at low frequencies

76

Figure 91: Closed-loop gain at ωc for different phase margins.

* To have a slope of 0 at low frequencies means our class 1 term has a power of n = 0, so it
does not contribute an initial slope, so this means no poles at the origin and thus type 0

* The low-frequency gain, K0, is equal to the position constant Kp, since Kp = lim
s→0

KDcG(s) =
lim
ω→0
|KDcG(jω)|

* We can control the steady-state error by controlling the gain K – we are shifting the entire
plot up or down, which changes the low-frequency gain

– A type 1 system’s open-loop magnitude plot starts with a slope of -1
* Now Kv = lim

s→0
sKDcG(s) = lim

ω→0
ω|KDcG(jω)| so at low frequencies, |KDcG(jω)| ≈ Kv

ω
* We can find Kv by going to ω = 1 and finding the intersection of the initial asymptote with

the vertical line ω = 1
– A type 2 system’s open-loop magnitude plot starts with a slope of -2

* At low frequencies, |KDcG(jω)| ≈ Ka

ω2
* Similarly, we can find Ka by finding the intersection of the initial slope −2 asymptote with

the vertical line ω = 1

Lead Compensator Design

• Consider a PD controller, Dc(s) = (TDs+ 1), which is added to improve stability and dynamic response
– This is a numerator class 2 term, which steps up the slope of the magnitude plot at the break

point 1
TD

– This essentially increases ωc, which increases ωBW and therefore ωn which speeds up the system
– This also increases the phase (since it’s a denominator term), which increases the phase margin,

which increases damping
– Shortcomings:

* At low frequencies the gain is 1, so this doesn’t do much to the steady-state response
* At high frequencies (i.e. noise), the gain is very high, so the noise is amplified

• Instead, we often use a lead compensator, which has a gain that flattens at higher
frequencies, to avoid noise amplification

– Specify the break point so that the amount of increased phase desired happens near the crossover,
so we can increase the PM

* From the design requirements and the Bode plot of the uncompensated system, we can see
how much additional PM we need

• Practically, we use a lead compensator, Dc(s) = TDs+ 1
αTDs+ 1 where α < 1, with corner frequencies

ωl = 1
TD

(low) and ωh = 1
αTD

(high)

77

Figure 92: Bode magnitude plot for PD control.

Figure 93: Bode phase plot for PD control.

– The additional denominator class 2 term steps the slope down at higher frequencies (so the
magnitude plot becomes flat), so we avoid amplifying high frequency noise

– This comes at the cost of having the phase going up and then back down (instead of staying at
+90° like the PD controller); the corner frequencies need to be chosen carefully so we get the
maximum amount of increase to the PM

* We typically choose ωh ≫ ωl, typically ωh > 5ωl

– The phase increase is ϕ = ∠Dc(jω) = tan−1(TDω)− tan−1(αTDω)

* This gives ϕmax = tan−1
(

1√
α

)
− tan−1(

√
α) occurring at ωmax = 1

TD
√
α

(by differentiation)

* sinϕmax = 1− α
1 + α

=⇒ α = 1− sinϕmax

1 + sinϕmax
• This gives us a simpler form to find α from ϕmax

• In design, we decide how much ϕmax to use, and then we obtain α

* 1
α

is the lead ratio; the higher the lead ratio, the more we approach a PD compensator
• Selecting this is a tradeoff between a desired PM (for good damping) and an acceptable

level of high-frequency noise amplification
• Rule of thumb is to have have a lead compensator contribute no more than 70° to the

phase; if we need even more, a double lead compensator can be used

• Both PD controller and lead compensator have no poles at the origin, so the system type is not changed
• Example: for the plant 1

s(s+ 1) , design a lead compensator to obtain a response to a unit-ramp input

with an overshoot MP < 25% and steady-state error of no more than 0.1
– The open-loop transfer function is type 1 (we couldn’t have changed it with a lead compensator

anyway)
– Open loop TF: L(s) = K

TDs+ 1
αTDs+ 1 ·

1
s(s+ 1)

78

Figure 94: Bode magnitude plot for lead compensator.

Figure 95: Bode phase plot for lead compensator.

– For R(s) = 1
s2 , ess = lim

s→0

1
s+KDc(s) 1

(s+1)
= 1
KDc(0) , therefore we need Kv = KDc(0) ≥ 10

from the steady-state error requirement
* This yields a value of K = 10, since the lead compensator always has Dc(0) = 1
* Since we don’t have a lag compensator we have to use K for the steady-state response; if we

had one we could save K to optimize the dynamic response
– For MP < 25%, we use the direct relation to get PM = 45°
– PM of the uncompensated system is only 20°, so we need to add more than 25°

* The phase increase needs to be more than 25°, since the compensator zero increases ωc due to
the increase in slope, and the overall trend in phase is decreasing

* We need to add a safety margin
– For ϕmax = 40° of lead, 1

α
= 5

– To get TD we normally look at the desired ωc (which influences system speed)
* For this question we don’t have a restriction on speed
* 1
TD

= ωmax

√
α

* By trial and error selecting ωmax, we find TD = 0.5

– The final controller is Dc(s) = 10
s
2 + 1
s

10 + 1

• For a lead compensator, we specify the parameters from design requirements as follows:
– The crossover frequency ωc, which determines the bandwidth hence and speed of response
– The phase margin PM, which determines the damping ratio and overshoot
– The low-frequency gain K, which determines the steady-state error
– In general, lead compensation increases the ratio ωc

KDcG(0)
• Design procedure for lead compensator:

1. Determine K to satisfy error or bandwidth requirements
– For error, pick K to satisfy the error constant
– For bandwidth, pick K so that ωc is within a factor of two below the desired closed-loop

bandwidth

79

Figure 96: Bode plot of the example lead compensated system.

2. Evaluate the PM of the uncompensated system using this K
3. Find the amount of PM increase we need (add a safety margin, usually 5° or more)
4. Determine α = 1− sinϕmax

1 + sinϕmax

5. Pick the desired crossover frequency and make ωmax there, and determine TD using 1
TD

= ωmax

√
α

6. Draw the compensated frequency response and check that the PM requirement is satisfied; iterate
if not

• Example: type 1 servo mechanism, KG(s) = K
10

s(s/2.5 + 1)(s/6 + 1) ; design a lead compensator to

obtain PM = 45° and Kv = 10
1. 1

Kv
= 1

10 = lim
s→0

s
1

1 +KDc(s)G(s)
1
s2 =⇒ K = 1

2. Uncompensated PM is −4° at ωc ≈ 4
3. We want the lead to add ϕmax = 54° (with a safety margin of 5°)
4. Use formulas to get α = 0.1
5. Choose a desired ωc, e.g. 6 (in this case we have no hard speed requirement), giving TD = 1

ωc
√
α
≈

0.5
6. Draw the new Bode plot for Dc1(s) = s/2 + 1

s/20 + 1 = 10 s+ 2
s+ 20

– We see that the PM requirement is not satisfied!
– More iterations show that a single lead compensator cannot meet this PM requirement due to

the high-frequency slope of -3
7. Double the lead compensator; on examination this gives PM = 46°, meeting the requirements

80

Figure 97: Bode plots for the uncompensated system, and the two iterations of lead compensators.

Lecture 26, Apr 12, 2024
Design for Dynamic Compensation

• For PI control, Dc(s) = 1 + 1
TIs

, the steady-state error of the system is reduced with minimal impact
on the bandwidth

– The gain is high at low frequencies, which reduces the steady-state error
* This increases the system type

– However, it causes the reduction of phase margin at frequencies lower than the breakpoint 1
TI

,
which degrades stability

* This makes sense since we know that an integral controller may destabilize the system
– We usually place the break point 1

TI
at a frequency substantially less (one octave to multiple

decades) than the crossover frequency, so that the impact on PM is minimal
– The main practical problem of PI control is integral windup (aka overflow), leading to saturation

of the system
* A sudden change in the reference causes the integral term to accumulate too much
* This leads to a very sluggish controller

• We typically use a lag compensator instead, Dc(s) = α
TIs+ 1
αTIs+ 1, where α > 1, so the pole has a lower

break point than the zero
– This can decrease the steady-state error without lowering the crossover frequency
– The magnitude no longer increases to infinity at lower frequencies and instead converges to α,

however the phase at low frequencies now converges to 0, instead of the −90° before
* This allows us to still reduce the steady-state error, without sacrificing too much phase margin

– We choose the poles and zero relatively close together, and well below (one octave to multiple
decades) the crossover frequency (i.e. choose a large TI)

* Having the corner frequencies far from the break point minimizes the reduction in phase
margin

81

Figure 98: Bode plots of the integral controller.

Figure 99: Bode plots of the lag compensator.

82

• Lag compensator design procedure:
1. Determine the gain K required to get the desired PM without compensation, with a 5° to 10°

margin to account for the PM reduction of the compensator
2. Draw the Bode plot of the uncompensated open-loop TF and check the low-frequency gain, which

gives the steady-state error
3. Determine the value of α to meet the steady-state error requirement – α is how much more we

need to multiply the low-frequency gain by in order to meet the steady-state error requirement
4. Choose the upper corner frequency 1

TI
(the zero) to be one octave to multiple decades below the

uncompensated ωc

5. Iterate on the design and verify that it meets requirements
• Example: G(s) = 115

(s+ 1)(s+ 3)(s+ 28) , design a lag compensator to get an overshoot of less than

15% and a steady-state error of less than 2%
– MP < 15% =⇒ PM = 56° from the plots; having a margin gives PM = 66°
– We have no restrictions on ωc so pick it so that we get PM = 66°

* Plot the Bode plot and find that ωc = 2.5 gives us the desired PM; at this value, the gain is
currently 0.38

* We get K = 2.63 to get us the desired ωc

– Using this value of K, the uncompensated Kp is 3.6 (same as the value of the magnitude plot at
ω = 0)

– We want ess = 1
1 +Kp

< 0.02 =⇒ Kp > 49 instead; choose Kp = 50 for some margin

* Therefore α = 50
3.6 = 14

– Choose 1
TI

one decade below the crossover frequency, and double check that requirements are
satisfied

• A PID compensator Dc(s) = K(TDs + 1)
(

1 + 1
TIs

)
can be used to improve both transient and

steady-state responses
– Roughly equivalent to combining lead and lag compensators

* Dc(s) = γ

(
TDs+ 1
TD

γ s+ 1

)(
TIs+ 1
γTIs+ 1

)
for γ > 1

• For some systems, the Bode plot will cross over the real axis multiple times; this results from the
natural modes of vibration of the system

– Gain stabilization is the simple approach of modifying K to bring the entire plot down
– Phase stabilization is the use of notch compensators that remove the system’s response at the

problematic frequencies

• A lead-lag compensator, Dc(s) = β

(
TIs+ 1
βTIs+ 1

)(
TDs+ 1
αTDs+ 1

)
for α < 1,β > 1, combines both

• Example: given G(s) = 1
s2(s+ 2) , design a lead-lag compensator to get tr ≤ 1, Mp ≤ 40%, ts ≤ 10 (for

2%), and ess ≤ 10%
– Convert: ωn ≥ 1.8, ζ ≥ 0.3 =⇒ PM ≥ 30°, σ = ζωn ≥ 0.46, ess = 1

Ka
≤ 0.1

* The requirement for ess suggests that a lead-lag compensator is likely needed
– Initially, choose ωn = 2 and so ωBW ≈ 2; start with crossover frequency at half bandwidth, ωc = 1,

and phase margin of 40° (with margin added)
– At ωc, the magnitude |G(jωc)| = 0.447 for the uncompensated system, so choose K = 1

0.447 to
make this the crossover frequency

– The phase is −207° at ωc, so the initial phase margin is −27° – we need to add ϕmax = 67° of
phase margin

– Using the formula, α = 0.042

83

– Choose ωmax = ωc = 1.0, so that Dc1(s) = 4.88s+ 1
0.21s+ 1

* Now at ωc the magnitude is 4.86, so reduce K further by this factor to get K = 0.46
* This gives a PM of 40°

– Plotting the step response shows that the overshoot and settling time meet requirements, but not
rise time (by a very small amount)

* Increase K by a small amount to 0.5, which increases overshoot and allows meeting the rise
time requirement

– The existing steady-state error is 0.25; we need ess = 1
Ka
≤ 0.1 so Ka ≥ 10

* The open-loop gain at small frequencies needs to be increased by a factor of 40, so β = 40
– Choose the upper corner frequency at a tenth of ωc, so 1

TI
= 0.1, giving TI = 10 =⇒ Dc2(s) =

40 10s+ 1
400s+ 1
* As expected, the open-loop response is faster with worse overshoot

– In time domain this now has an overshoot that is slightly over the limit, so we need to iterate:
* Try 1

TI
= 0.05 =⇒ TI = 20 =⇒ Dc2(s) = 40 20s+ 1

800s+ 1
• This now doesn’t meet the requirements

84

	Lecture 1, Jan 8, 2024
	Taxonomy of Control Systems

	Lecture 2, Jan 11, 2024
	Classic Feedback Control Example: Cruise Control
	System Modelling

	Lecture 3, Jan 15, 2024
	Taxonomy of System Models

	Lecture 4, Jan 18, 2024
	Dynamic System Modelling

	Lecture 5, Jan 22, 2024
	More Dynamic System Examples

	Lecture 6, Jan 25, 2024
	Linear Time-Invariant Systems

	Lecture 7, Jan 29, 2024
	Laplace Transform
	Transfer Functions

	Lecture 8, Feb 1, 2024
	Block Diagrams

	Lecture 9, Feb 5, 2024
	First-Order System Response
	Second Order System Response

	Lecture 10, Feb 8, 2024
	Second Order System Response (Continued)

	Lecture 11, Feb 12, 2024
	Second Order System Response (Continued)
	Effect of Zeroes
	Higher Order Systems

	Lecture 12, Feb 15, 2024
	Stability of LTI Systems

	Lecture 13, Feb 27, 2024
	Control System Performance
	Stability
	Tracking
	Regulation
	Sensitivity

	Lecture 14, Feb 29, 2024
	Control System Type

	Lecture 15, Mar 4, 2024
	PID Controllers
	Proportional Control (P)
	Integral Control (I)
	Derivative Control (D)
	Proportional-Integral Control (PI)
	Proportional-Derivative-Integral Control (PID)

	Example System: DC Servo Motor

	Lecture 16, Mar 7, 2024
	PID Controllers, Continued
	Ziegler-Nichols Tuning Method
	Feedforward Control

	Lecture 17, Mar 11, 2024
	Root-Locus Design Method
	Root Locus Determination

	Lecture 18, Mar 14, 2024
	Root Locus Determination
	Example: Control Gain Selection

	Lecture 19, Mar 18, 2024
	Gain Selection from Root Locus
	Example: 1-DoF Satellite Attitude Control

	Lecture 20, Mar 21, 2024
	Example: 1-DoF Satellite Attitude Control (Continued)
	Design for Dynamic Compensation

	Lecture 21, Mar 25, 2024
	Design for Dynamic Compensation (Continued)
	Lead Compensator
	Lag Compensator
	Notch Compensator
	Example: Quadrotor Drone Control (Pitch Axis)

	Lecture 22, Mar 28, 2024
	Frequency Response Design Method
	System Behaviour From Frequency Response

	Lecture 23, Apr 1, 2024
	Plotting Bode Plots

	Lecture 24, Apr 4, 2024
	System Response from Frequency Response
	Example: Spacecraft Attitude Control

	Lecture 25, Apr 8, 2024
	Dynamic Response from Frequency Response
	Lead Compensator Design

	Lecture 26, Apr 12, 2024
	Design for Dynamic Compensation

