
Lecture 35 (2-18), Apr 10, 2023
Maxwell-Boltzmann Speed Distribution

• We will consider as our “system” one of the particles and the rest of the particles as the “thermostat”;
for our “system”, what is P (v), i.e. the probability density function of the speed?

• Applying the Boltzmann distribution gives us P (v) dv = ce− E
kT v2 dv = ce− mv2

2kT v2 dv
– v2 dv is the number of microstates that have speed in [v, v + dv]; this is proportional to the surface

area of a sphere with radius v
– The exponential term is the probability of each microstate with energy v

• After applying normalization, in 3D we get P (v) = 4π
( m

2πkT

) 3
2

v2e− mv2
2kT

– In 2D, the number of microstates with speed in [v, v + dv] would be proportional to v dv, since it
is now proportional to the circumference of a circle with radius v

* In 2D the function is linear near v = 0 and the peak is closer to 0
– Note this distribution is for a classical gas, which breaks down as v → 0

• P (v) is maximum at v∗ =
√

2kT

m
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P (v)v2 dv works out to be 3

2kT , which once again verifies equipartition

Intuition for the Partition Function
• Let the ground state have energy E0 = 0, then Z =

∑
e− E

kT = 1 + e− E1
kT + e− E2

kT + ...

• The partition function tells us roughly which states are important and which ones are not important at
a given temperature; it “partitions” the microstates into significant ones and insignificant ones

• If E ≫ kT , its contribution to Z will be very small, making them insignificant; they are decoupled from
thermodynamics at the given temperature

– Because Z determines F , the thermodynamic potential, which determines macroscopic properties,
this means these states are unimportant to the macroscopic behaviour

• e.g. at room temperature kT ≈ 0.02eV, which allows us to ignore excitations in the electronic and
nuclear states, because they have energies that are significantly larger

– This is why we only need to consider translational, rotational and vibrational energies and not
electronic and nuclear structures

Equivalence of T, V, N and E, V, N Systems
• The Boltzmann distribution was derived with a different set-up, yet it still gives the same results in the

case of the Einstein solid in the thermodynamic limit, if we use the average energy Ē = ⟨E⟩
• We can show that in the TD limit, the two formulations will arrive at the same results
• The main difference is that for the Boltzmann distribution E varies, but E is constant for the multiplicity

function approach

• We can find ⟨E⟩ as shown in the previous lecture and similarly ⟨E2⟩ and using this we can find σ2
E

N
;

this turns out to scale as 1√
N

• In the thermodynamic limit with very large N , the variance of E becomes negligible compared to N , so
the spread of energies is minimal and the average energy becomes functionally the same as the energy
itself
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