Lecture 30 (2-13), Mar 27, 2023

Clausius' Definition of Entropy

- Consider keeping N and V fixed, then for infinitesimal changes ΔU , $\frac{\Delta S}{\Delta U} = \frac{1}{T} \implies \Delta S = \frac{\Delta U}{T}$
- Since we keep volume fixed, $\Delta U = \delta Q$ therefore $S = \frac{\delta Q}{T}$ this is the Clausius definition of entropy (the original thermodynamic definition of entropy)
 - In the Clausius definition only changes in S are defined
- Clausius also postulated that $\Delta S \ge 0$ in a closed system, which is formulated as the second law
- $S = \frac{\delta Q}{T}$ and $\Delta S \ge 0$ implies a unidirectional flow of heat; heat always flows from a hotter object to a colder object, so that the loss in entropy of the hotter object is less than the gain in entropy of the colder object
- Since $c_v = \frac{\Delta U}{\Delta T}$ we have $\Delta S = \frac{\Delta U}{T} = c_v \frac{\Delta T}{T}$ - Integrating, we have $S(T_2) - S(T_1) = \int_{T_1}^{T_2} \frac{c_v(T)}{T} dT$
 - This allows us to measure changes in entropy

Other Properties of Entropy

- For an ideal gas, $c_v = \frac{3}{2}Nk$ which is independent of T $-S(T_2) S(T_1) = \int_{T_1}^{T_2} \frac{\frac{3}{2}Nk}{T} dT = \frac{3}{2}Nk \ln \frac{T_2}{T_1}$ $\text{As } T_2 \to 0$, we have $S(T_2) S(T_1) \to -\infty$; but S is log of multiplicity, so it should be finite and positive
 - This is another way that we can show the classical ideal gas model fails
- In order to make sure S stays finite as $T_2 \rightarrow 0$, we must place constraints on c_v
 - A sufficient condition is to have $c_v \sim T^{\alpha}, \alpha > 0$ so that when we integrate we get $\frac{1}{\alpha}T^{\alpha}$, which is finite as $T \to 0$ if $\alpha > 0$
 - This is known as Nernst's theorem

Metals as Ideal Quantum Gases (Fermi Gases)

- In a metal electrons are delocalized and freely float around, but they are very dense and have large de • Broglie wavelengths due to their tiny mass, so they exhibit quantum behaviour at room temperature
- For such a system $c_v \sim aT + bT^3$
 - The first term comes from the contribution of electrons; the second term comes from contribution of phonons (quantum waves)
- For "strange metals", $c_v \sim T^{\frac{p}{q}}$