Lecture 3, Jan 13, 2023

The Hydrogen Atom

- Recall:
 - Properties of the hydrogen atom indicated quantum behaviour Rydberg's equation
 - Bohr introduced a quantization condition that explained the Hydrogen spectral lines
 - de Broglie proposed that matter has wavelike properties
 - Schrödinger then came up with the wave equation that explained Bohr's quantization condition
 - To solve the hydrogen atom, we take it to spherical coordinates and separate $\Psi(r, \theta, \phi)$ = $R(r)\Theta(\theta)\Phi(\phi)$
- Summary of the Hydrogen solution:

 $-\Psi(r,\theta,\phi)+R_n(r)\Theta_{lm}(\theta)\Phi_m(\Phi)$

$$-n = 1, 2, 3, \cdots$$

- $-E = -\frac{E_R}{n^2} l = 0, 1, 2, \cdots, n-1$
- $-m=0,\pm 1,\pm 2,\cdots,\pm l$
- The ground state is n = 1, l = 0, m = 0
- Total angular momentum is $L = \sqrt{l(l+1)}\hbar$; $L_z = m\hbar$ is quantized just like Bohr assumed
 - * Think about a vector of length $L = \sqrt{l(l+1)}$ being projected onto the z axis
 - * l controls the total angular momentum; m controls how much of it is in the z axis