Lecture 27 (2-10), Mar 20, 2023

Thermodynamic Potential

- The postulate directly implies that for a closed system that reaches thermodynamic equilibrium, it is most likely to find itself in a state of maximum S
- This can be seen as an alternative way to state the second law, that S is always increasing •
- For an isolated system (constant E), we say that the entropy is the "thermodynamic potential"
 - Just like how a classical system tries to minimize its potential (e.g. a falling object), the system will try to maximize its entropy
 - Just like $\vec{F} = -\vec{\nabla}U$ is the driving force for a classical system, $\frac{1}{T} = \frac{\partial S}{\partial F}$ is the driving force for reaching thermal equilibrium
 - * In equilibrium forces are in balance, just like how in thermal equilibrium the temperature
- Since $\frac{\partial S}{\partial V}$ is the pressure and $\frac{\partial S}{\partial N}$ is the chemical potential, the partial derivatives of S determine the

General Properties of Entropy

- For now, only consider E
- For the Einstein solid, under $\frac{q}{N} \gg 1 \implies \frac{kT}{\hbar\omega \gg 1}$ we had $S(E) = kN \ln \frac{Ee}{N\hbar\omega}$ For this system and all "normal" systems, the slope of S(E) to E is always positive (and so T > 0)
 - Additionally, this graph flattens out with increasing E; therefore $\frac{\partial^2 S}{\partial E^2}$, and so with increasing E,

 - $\frac{\partial S}{\partial E} = \frac{1}{T}$ goes down or T goes up * This means that the heat capacity is positive
 - Such systems are *thermodynamically stable*
 - * For systems held together by gravity (e.g. stars), this pattern is broken and the system actually cools down with more energy
- Recall that for the paramagnet $\Omega(N_{\uparrow}, N) = \frac{N!}{N_{\uparrow}!(N N_{\uparrow})!}$ This is not a "normal" system since it has a maximum energy

 - The plot of Ω against N_{\uparrow} has a maximum at about $N_{\uparrow} = \frac{N}{2}$
 - To convert this to energy, we have to flip the graph (since $N_{\uparrow} = N$ has minimum energy)
 - The entropy curve is concave down with a maximum
 - * In the first half of the curve between U_{min} and 0 the temperature is positive and increasing with E
 - * In the second half of the curve, the temperature is negative
 - This is a metastable region that can only exist for a short amount of time
 - * At the maximum, the temperature becomes infinite
 - When the total spin is maximum, we have minimum energy; as we heat up the magnet, the total spin decreases with temperature
 - * The total spin at high temperature is $S \sim \frac{\mu_0 B}{kT}$ (Curie's law)