Lecture 23 (2-6), Mar 10, 2023

Fundamental Postulate of Statistical Mechanics

- In an isolated gas of many particles $(N \sim 10^{23})$ there are many ways we can distribute a fixed amount of energy E amount the particles
 - Each of these ways the energy is distributed is a *microstate*; there are many such microstates
 - The total energy is a *macrostate*
- Collisions lead to a change in the way energy is distributed, leading to randomness
- The fundamental postulate of statistical mechanic says that all accessible microstate is equally likely
 - Accessible microstates are ones that have the right amount of total energy that matches a given macrostate
 - We give up the mechanistic description it's impractical to know the trajectory of each particle
 - Instead we replace it with the probabilistic distribution
 - * As N gets large, probabilities become certainties as probability distribution peaks become sharper
- The *multiplicity function* is the number of microstates accessible to a given macrostate
 - Once you have the multiplicity function of a system, you can deduce everything about the system

Electronic Paramagnet

- A material that has a macroscopic magnetic moment
- We'll model the microscopic magnetic moments as spins
 - The 2 degrees of freedom are the spins
 - $-s_i = \{+1, -1\}$ for $i = 1, \cdots, N$
- We ignore spin-spin interaction, spin-atom interaction
 - Without these simplifications this would be extremely hard to solve
 - However without spin-spin interaction this system does not reach equilibrium
- In this N-spin system we have 2^N possible microstates
 - Microstates are discrete and finite this is not always the case
- Motivation: If we put a magnet in a magnetic field, it has energy $U = -\mu \cdot \vec{B}$, which is minimized when the 2 vectors are aligned
 - Therefore $U_i = -\mu_0 B s_i$ so $U = -\mu_0 B \sum_{i=1}^N s_i = -\mu_0 B S$ where S is the total spin, the sum of the

individual spins

- S is the macrostate, which can be observed macroscopically
 - S is an integer in the range [-N, N], in increments of 2 (since flipping a spin changes the total spin by 2)
 - This gives us a total of N + 1 possible macrostates
 - * Instead of talking about S, we just need to specify N_{\uparrow} since $N_{\downarrow} = N N_{\uparrow}$
 - * $S = 2N_{\uparrow} N$
 - * There are N+1 possible values of N_\uparrow so there are N+1 macrostates
 - $U,\,S,\,N_{\uparrow}$ can all be used equivalently to specify a macrostate
- For this system, the multiplicity function is easy to calculate

$$- \ \Omega(N_{\uparrow}, N) = \binom{N}{N_{\uparrow}} = \frac{N!}{(N - N_{\uparrow})!N_{\uparrow}!}$$