Lecture 21 (2-4), Mar 6, 2023

Discrepancy in Heat Capacity – Effect of Quantum Mechanics

- Based on quantum mechanics, can we estimate the energy where molecules have enough energy to excite rotations?
- Consider a hydrogen molecule: interatomic distance of $0.7 \times 10^{-10}\,\mathrm{m}$ and mass of $1 \times 10^{-27}\,\mathrm{kg}$
 - The momentum is $L = I\dot{\phi}$ classically, rotational energy is $\frac{1}{2}I\dot{\phi}^2 = \frac{L^2}{2I}$
 - Moment of inertial is given by $I \sim mr^2$
 - Angular momentum is quantized, we can consider it as either L=0 for no rotation or $L \ge \hbar^2$ for some rotation
 - Therefore the minimum energy of rotation is $E \sim \frac{\hbar^2}{I}$
 - $-I \sim 1 \times 10^{-27} \,\mathrm{kg} (0.7 \times 10^{-10} \,\mathrm{m})^2 = 1 \times 10^{-48} \,\mathrm{kg} \,\mathrm{m}^2$
 - This gives the minimum energy on the order of 1×10^{-20} J
 - If we compare this to kT, we get that a temperature on the order of 1000K is needed to have enough energy to excite rotations

First Law of Thermodynamics

- $\Delta U = Q + W$, where Q is the heat absorbed and W is the work done on the system
- Consider a piston of area A being pushed against a gas with pressure p, volume V for length $\mathrm{d}x$
 - dx is positive of the gas expands, negative if it contracts
 - The force is pA, therefore the work done by the gas is pA dx = p dV
 - Let $dU = \delta Q p dV$, where δQ is some small amount of heat resulting from this
 - * Note the sign on $p \, dV$ since here it's the work done on the gas, not by the gas
 - This is the first law expressed in terms of infinitesimal changes

Isothermal Processes

Definition

A *quasistatic* process is one where the process is slow enough such that the system is in thermodynamic equilibrium for every moment of the process

- How do finite changes of V affect the state of the system?
 - We need to make assumptions about the nature of the change
 - This question is easy to answer if the process is quasistatic
 - * In a non-quasistatic expansion we'll get a depletion of gas density near the piston as it moves, so the force it experiences will be less
 - * Therefore the work done in a quasistatic expansion is strictly larger than the work in a non-quasistatic expansion
 - For such processes we can find the work done by $W = \int_{V_i}^{V_f} p(V,T) \, \mathrm{d}V$
 - * If the temperature is constant (isothermal process), then $W = \int_{V_i}^{V_f} \frac{NkT}{V} dV = NkT \ln \left(\frac{V_f}{V_i} \right)$
 - * To keep the process as isothermal we need to keep it in contact with a thermal reservoir, and now the process must be slow enough that we get both pressure and temperature equilibrium
 - For an isothermal process $\Delta U = Q NkT \ln \left(\frac{V_f}{V_i}\right)$, but since U is dependent only on T for an ideal gas, we must have $Q = NkT \ln \left(\frac{V_f}{V_i}\right)$
- For an isothermal process pV = const so on a P-V diagram this shows up as a curve $P = \frac{C}{V}$

– The area under this curve is the work done by the process