
Lecture 19 (2-2), Mar 2, 2023
Temperature as a Measure of Average Kinetic Energy

• Several assumptions:
– Molecules are uniformly distributed in space (at TD equilibrium)
– Velocities are isotropically distributed (i.e. the number of particles with velocity in any given

direction is the same)

* This means 1
N

N∑
i=1

vxi = 0 since there are always the same number of particles going in the

positive vs. negative directions
– The major assumption of the molecular model: all molecules have the same average speed in time

* Let 1
N

N∑
i=1

v2
xi = v̄2

* For now we assume all molecules move with the same speed that is the average
• Consider one wall with area A; what is the average force exerted on the wall due to the molecules?

– How many molecules collide with the wall in time ∆t?
* Consider a volume formed by extending the area A a distance L into the gas, where L = v̄∆t
* Assume all molecules in the volume are moving either in the +x or −x directions (by isotropy

this means each would have half the molecules)
• We can integrate over solid angles if we don’t make this assumption, but the conclusion is

the same
• Combined with the speed, this means all molecules in the box that are moving in the +x

direction would hit the wall, and no molecules outside the box will hit the wall (i.e. half of
the molecules hit the wall)

* Therefore the number of molecules that hit is 1
2

N

V
V = 1

2
N

V
LA = 1

2
N

V
v̄∆tA

– What is the force caused by the collisions?
* Each molecule has momentum mv̄, which becomes −mv̄ after colliding with the wall; therefore

the total momentum transferred is 2mv̄

* Total momentum transferred is then N

V
mv̄2∆tA

* Since F = dp

dt
the force is N

V
mv̄2A

– Therefore the pressure produced by this is mv̄2 N

V

• Bring in the ideal gas law: p = kT
N

V
= mv̄2 N

V
, we get the conclusion that kT = mv̄2

– Therefore temperature is a measure of the kinetic energy
– But note v̄ is only in the x direction - what if we bring in the other directions?
– With our isotropic assumption, we know that v̄ is the same in any direction
– Now consider v⃗2 = 1

N

∑
i

∥v⃗∥2 = 1
N

∑
i

v2
xi + v2

yi + v2
zi = 3v̄2

– Therefore kT = mv̄2 = 1
3mv⃗2 =⇒ 1

2mv⃗2 = 3
2kT

• v⃗2 = 3kT

m
let vrms =

√
v⃗2 =

√
3kT

m
– If we plugin numbers for e.g. nitrogen, we get hundreds of meters per second
– This is also roughly the speed of sound

Important

For an ideal gas, 3
2kT is the average kinetic energy of the molecules in the gas
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Classical Equipartition Theorem
• T being a measure of average kinetic energy is an example of the classical equipartition theorem, which

is proven using SM

Theorem

Classical equipartition theorem: In thermodynamic equilibrium of a classical ideal gas, the average
energy per degree of freedom of a molecule is:

1. Translational: 1
2kT

2. Rotational: 1
2kT

3. Vibrational: kT

• Depending on the kind of molecule, we can calculate what degrees of freedom it has and how many,
from which we can calculate the average energy from the temperature

• This allows us to predict the heat capacity of gases
– Actual heat capacities deviated from the prediction of the classical equipartition theorem because

of quantum mechanics
• e.g. For a diatomic molecule, each atom has 3 DoF; overall in the molecule there are 3 translational

degrees of freedom of the CoM, and 2 rotational degrees of freedom, and 1 vibrational degree of freedom
– Therefore the average energy is 3

2kT + 2
2kT + kT = 7

2kT

– U = N
7
2kT

• The idea of the equipartition theorem is that through collisions energy is distributed into all degrees of
freedom (translational, rotational and vibrational)

• The reason reality deviates from this is due to the quantized vibrational energies in ℏω (since vibrations
are harmonic oscillators), so if a molecule doesn’t have enough energy it can’t transfer energy into the
vibrational degrees of freedom

– If kT ≫ ℏω then this won’t have much effect, but at much lower temperatures this becomes
important
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