Lecture 10, Feb 2, 2022

Heteronuclear Diatomic Orbitals

- When two atoms come together with different energies in the orbitals, the electrons in the molecular orbitals will be closer to the one with the lower energy
 - Electron density is greater in the negative ion (lower energy) side
- When the difference in energy is very large, the filled orbital on the negative ion has the same energy as the atomic orbital
- Atomic orbitals most effectively overlap to form molecular orbitals when:
 - 1. Shapes are conductive to good overlap symmetry
 - 2. Their energies are similar in the separated atoms
- Electron
egativity difference χ between a pair of atoms in a bond defines the unbalanced electron sharing or formation of a polar bond

$$|\chi_A - \chi_B| = \sqrt{D_{AB} - (D_{A_2} - D_{B_2})^{\frac{1}{2}}}$$

- Normalized so that fluorine is 4
- $\Delta \chi > 1.8$ is ionic; $\Delta \chi < 0.6$ is covalent; in between is polar covalent
- With polar covalent bonds, the bonds have a dipole; the vector sum of the all the bond dipoles is the overall molecular dipole
 - The dipole moment $\mu = qr$ where r is the distance between charges and q is the magnitude of charge separation

Hybridization

- Add together the s orbitals and p orbital wavefunctions to create hybridized orbitals in order to follow VSEPR shapes
- Examples:
 - Tetrahedral: NH₄
 - * Nitrogen has valence shell electron configuration $2s^22p^3$
 - * 1 electron from the s shell gets promoted into the same energy as a p shell, and then the s shell and 3 p shells hybridize to form sp^3 orbitals
 - * The sp^3 orbitals have 4 symmetric lobes arranged in a tetrahedral pattern; each lobe will have 1 electron in it, which can σ bond with the s shell in the hydrogen
 - Linear: CO_2
 - * The middle carbon forms sp hybrid orbitals, with 2 symmetric lobes arrange linearly
 - * The 2 lobes from the sp orbitals σ bond with the p orbitals in the oxygen atoms
 - * The remaining 2 p unhybridized orbitals form π bonds with the p orbitals in the hydrogen atoms