
Lecture 1, Jan 9, 2023

Lecture 2, Jan 12, 2023

Lecture 3, Jan 13, 2023
The Hydrogen Atom

• Recall:
– Properties of the hydrogen atom indicated quantum behaviour – Rydberg’s equation
– Bohr introduced a quantization condition that explained the Hydrogen spectral lines
– de Broglie proposed that matter has wavelike properties
– Schrödinger then came up with the wave equation that explained Bohr’s quantization condition
– To solve the hydrogen atom, we take it to spherical coordinates and separate Ψ(r, θ, ϕ) =
R(r)Θ(θ)Φ(ϕ)

• Summary of the Hydrogen solution:
– Ψ(r, θ, ϕ) +Rn(r)Θlm(θ)Φm(Φ)
– n = 1, 2, 3, · · ·
– E = −ER

n2
– l = 0, 1, 2, · · · , n− 1
– m = 0,±1,±2, · · · ,±l
– The ground state is n = 1, l = 0,m = 0
– Total angular momentum is L =

√
l(l + 1)ℏ; Lz = mℏ is quantized just like Bohr assumed

* Think about a vector of length L =
√
l(l + 1) being projected onto the z axis

* l controls the total angular momentum; m controls how much of it is in the z axis

Lecture 4, Jan 16, 2023
Electron Spin

• The Zeeman effect: in the presence of a strong magnetic field, the spectral lines spread out
– This is because of the angular momentum from Lz = mℏ generating a magnetic dipole; the applied

magnetic field makes it so that the states with different spin are no longer degenerate
– With an even stronger field the lines split again due to spin
– Spin can be detected with electron spin resonance

• Spin quantum number is ms, with possible values ±1
2

• This allows 2 electrons to occupy the same atomic orbital

Lecture 5, Jan 19, 2023
Multi-Electron Systems

• For helium, we have the famed 2-body problem that cannot be solved due to the repulsion between the
two electrons

• We can use an approximate solution: independent particle approximation: treat each electron as moving
in a time-average potential defined by the other electron to define an effective potential

– The electron will screen some of the positive charge but there will always be an effective charge of
+1 or more

– Assume a hydrogenic (central force) wavefunction ψ′ for the two electrons, which gives us an
average electron distribution, from which we can get an effective potential U ′

* i.e. assume a potential U(r) = −Zeff (r)ke
2

r
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* The effects of other electrons are smeared out to be radially symmetric and expressed through
the effective charge Zeff

– Solve for the first electron to define a new ψ′, and repeat with the second electron
– Repeat this until the calculated energy converges

• Variational theorem: the true wavefunction always gives the absolute minimum energy
– This can be used to determine the effective charge Zeff due to the screening
– Make Z a parameter, use solution ψ(r⃗1, r⃗2) = e−Zeff (r1+r2)

– Determine E in terms of Zeff , and set dE
dZeff

= 0 to find the effective charge that results in the
minimum energy

• In a multi-electron atom, the energy levels are no longer degenerate and now it depends on the details
of the solutions

• e.g. in the 2s orbital we have a little peak below the p orbitals (and the Bohr radius)
– This makes it so that 2s and 2p are no longer degenerate
– The 2s is more tightly held and so has a bigger effective charge
– Energy depends on both n and l (but not m or ms)

Pauli Exclusion Principle
• No two electrons in a quantum system can occupy the same state
• No two electrons can have the same quantum numbers, so n, l,m,ms is a unique “quantum address”
• Hund’s Rule: the mos stable electronic state within a degenerate set of orbitals is the state with

maximum spin multiplicity (i.e. the one with the largest number of unpaired electron spins)

Lecture 6, Jan 20, 2023
Fermions and Bosons

• All electrons are identical, so you can’t distinguish between them
– Therefore a mathematically suitable wavefunction must reflect this
– This is the reason for the Pauli exclusion principle

• Since probabilities are described by |Ψ|2, physically we cannot distinguish between Ψ and −Ψ; i.e. if
two wavefunctions represent the same quantum state, they must be related through a constant or phase
only

– Since we can’t distinguish between two particles, this means that their combined wavefunction
must be symmetric or antisymmetric under particle exchange

– i.e. Ψ(A,B) = Ψ(B,A) or Ψ(B,A) = −Ψ(A,B)
– Particles for which Ψ(A,B) = Ψ(B,A) are called bosons (e.g. photons); particles for which

Ψ(B,A) = −Ψ(A,B) are called fermions (e.g. electrons)
• Electrons are fermions which is why they obey the Pauli exclusion principle: no two electrons can

occupy the same quantum state
– Suppose that electrons A and B do occupy the same quantum state, then Ψ(A,B) = Ψ(B,A)
– However since electrons are fermions we also have Ψ(B,A) = −Ψ(A,B)
– Combining the two we get that Ψ(A,B) = Ψ(B,A) = 0, i.e. the probability of two electrons in the

same quantum state is zero
• Suitable functions for the PEP must satisfy:

– Be indistinguishable to electron exchange
– Normalizable wavefunction
– Have to include spin
– Wavefunction must be antisymmetric to electron exchange
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Lecture 7, Jan 23, 2023
Stability and Bonding

• Elements with a high Zeff have higher electron affinity, and tend to form nonmetals (e.g. the halogens)
• When two atoms are brought near each other, the electron density builds up between them and screens

the proton charge
– When the two electrons are moving towards each other, the state has higher energy; this is an

antibonding state
– When they are moving away from each other, the state has lower energy; this is a bonding state

• We can solve the problem of one electron and two protons, which corresponds to the case of H2
+

– In the antibonding state electron density depletes in the centre due to the destructive interference,
so the electrons are concentrated near the outside

* The higher energy of the antibonding state tends to pull the molecule apart
– In the bonding state electron density builds up in the centre; the electrons are concentrated near

the centre
* The bonding state has lower energy since the high electron density in the centre is closer to

the protons
– In the bonding state, there is a minimum in the energy as a function of the inter-proton distance,

which facilitates bonding
• Both bonding and antibonding states are reflected by a superposition of atomic orbitals to form

molecular orbitals (LCAO-MO)
– The two ways we can superimpose the two hydrogenic wavefunctions are Ψ+ = Ψ1 + Ψ2 and

Ψ− = Ψ1 − Ψ2
– In the case of Ψ+, the two wavefunctions are in phase, so in the middle between the two atoms

they add constructively; this reflects the buildup in electron density that lowers the energy
– In the case of Ψ−, the two wavefunctions are out of phase so interfere destructively between the

two atoms; this reflects the depletion in electron density that raises the energy
• When the overlap is spherically symmetric you get a σ bond (s orbitals)

Lecture 8, Jan 26, 2023

Lecture 9, Jan 30, 2023
Formation of Molecular Bonds

• When two atoms come together, the sign of the electron wavefunctions determine the phase of the
electron movements

• When the wavefunctions have the same sign, the wavefunctions interfere constructively and electron
density builds up between the two nuclei; this gives the bonding orbital

– This represent the two electrons being in phase and so they are always staying far away from each
other

• When the wavefunctions have different signs, the wavefunctions interfere destructively so electron
density in the middle of the nuclei cancels; this gives the antibonding orbital

– The electrons are out of phase so they feel stronger repulsion
• For every bonding orbital there is an equivalent antibonding orbital
• A nonbonding orbital has the constructive and destructive interference parts perfectly cancel out
• The orbital overlap ⟨ψ1|ψ2⟩ = Sab = Sba is the extent to which the two orbitals overlap in space

– If the two orbitals are orthogonal, they have zero overlap
• When two atoms are brought together, these bonding/antibonding/nonbonding orbitals are created

– These are shown as states that are lower/higher energy than the original orbitals
– A nonbonding orbital would be a lone pair
– Antibonding orbitals are denoted by a star
– Molecular orbitals are often symmetric; they are denoted g (gerade, even) if they are identical

3



under inversion, or u (odd) if they change sign
• The bond order is defined as the number of electrons in bonding orbitals minus the electrons in

antibonding orbitals, divided by 2
– A bond order of 0 or less cannot exist, e.g. He2 does not exist because it would have a bond order

of 2 − 2
2 = 0

• In the period 2 elements, the additional states create more molecular orbitals
– In period 2 there are 8 orbitals (4 pairings of atomic orbitals, times 2 for bonding/antibonding)

Lecture 10, Feb 2, 2022
Heteronuclear Diatomic Orbitals

• When two atoms come together with different energies in the orbitals, the electrons in the molecular
orbitals will be closer to the one with the lower energy

– Electron density is greater in the negative ion (lower energy) side
• When the difference in energy is very large, the filled orbital on the negative ion has the same energy as

the atomic orbital
• Atomic orbitals most effectively overlap to form molecular orbitals when:

1. Shapes are conductive to good overlap – symmetry
2. Their energies are similar in the separated atoms

• Electronegativity difference χ between a pair of atoms in a bond defines the unbalanced electron sharing
or formation of a polar bond

– |χA − χB | =
√
DAB − (DA2DB2) 1

2

– Normalized so that fluorine is 4
• ∆χ > 1.8 is ionic; ∆χ < 0.6 is covalent; in between is polar covalent
• With polar covalent bonds, the bonds have a dipole; the vector sum of the all the bond dipoles is the

overall molecular dipole
– The dipole moment µ = qr where r is the distance between charges and q is the magnitude of

charge separation

Hybridization
• Add together the s orbitals and p orbital wavefunctions to create hybridized orbitals in order to follow

VSEPR shapes
• Examples:

– Tetrahedral: NH4
* Nitrogen has valence shell electron configuration 2s22p3

* 1 electron from the s shell gets promoted into the same energy as a p shell, and then the s
shell and 3 p shells hybridize to form sp3 orbitals

* The sp3 orbitals have 4 symmetric lobes arranged in a tetrahedral pattern; each lobe will have
1 electron in it, which can σ bond with the s shell in the hydrogen

– Linear: CO2
* The middle carbon forms sp hybrid orbitals, with 2 symmetric lobes arrange linearly
* The 2 lobes from the sp orbitals σ bond with the p orbitals in the oxygen atoms
* The remaining 2 p unhybridized orbitals form π bonds with the p orbitals in the hydrogen

atoms

Lecture 11, Feb 3, 2022
Correspondence Principle

• Quantum effects are important when de Broglie wavelength is comparable to the spacial scale of the
phenomenon
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– The phase of wavefunctions also need to be conserved – if the time scale of action is comparable to
quantum decoherence then quantum effects are important

– Important for quantum computers
• The core of quantum mechanics is the quantization of energy given as ∆E

– The classical limit is defined as ∆E ≪ kT
– In this limit thermal collisions blur out any resemblance of a wave and the system behaves classically

• The correspondence principle states that there is a continuous bridge from discrete quantized resonance
conditions of the quantum world to the continuum variables of classical mechanics

– e.g. for the infinite potential well E = h2n2

8mL2 , if L or m are on the classical scale, then E is
extremely small and energy approaches a continuum

• Example: Protein motion
– Functionally relevant motions of proteins are on the scale of 1 to 10 angstroms
– de Broglie wavelength calc be calculated using the mass and thermal velocity, and turns out to be

1.8 × 10−13 m
– This is much smaller than an atom so the system is not quantum

Long Range Intermolecular Forces
• Ionic bonds, covalent bonds, metallic bonds
• Metallic bonds are covalent bonding with different degrees of ionic character

– Metals typically involve 3d or higher valence orbitals
– This creates an electronic continuum and facilitates conduction

Short Range Intermolecular Forces
• Ion Coulombic dipole coupling: polar molecule with a permanent dipole moment interact with ions

– Dipole moments result from large differences in electronegativities between bonded atoms
– Potential function on the order of 1

r6
– Bonding from 40-600 kJ/mol
– e.g. dissolving a sodium ion in water perturbs 80 water molecules

• The hydrogen bond
– Hydrogen bonds to oxygen, nitrogen or fluorine
– The high specificity of this force imposes directions on biological molecules
– Hydrogen bonds encode information in DNA, provide protein building sites, nucleation sites, etc
– Also on the order of 1

r6
– Bond energies of 10-40 kJ/mol

• Dipole-dipole interactions
– Same physics as hydrogen bonds but 2 to 8 times weaker
– Bond orders of 5-25 kJ/mol
– Also on the order of 1

r6 for potentials
• Ion induced dipole interactions

– Ions polarize an otherwise neutral atom, creating a dipole
– Only occurs when the ion is in close proximity
– Oxygen transport uses this to bind oxygen to ion in heme proteins
– 3-15 kJ/mol
– Potential on the order of 1

r4
• Dipole-induced dipole interaction

– Even weaker, works the same
• Induced dipole-induced dipole: van der Waals force (aka dispersion or London forces)

– Spontaneous movement of charges create temporary dipoles that induce more dipoles
– Occurs when all molecules are strictly nonpolar
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– Weakest force, but powerful in numbers

Lecture 12, Feb 6, 2023
Hydrogen Bonds

• Hydrogen atoms are bonded to oxygen, nitrogen or fluorine
– The hydrogen is partially positive; the other atom is partially negative due to electronegativity

differences
– Chlorine does not form hydrogen bonds because it’s screened due to ionic bonding

• This force imposes directions on biological molecules
• Typically denoted with a hashed line
• Only a hydrogen bonded to oxygen, nitrogen or fluorine can hydrogen bond
• Carbon doesn’t form hydrogen bonds because its typical high valence of 4 contributes to more screening
• Hydrogen bonds give water special properties:

– higher boiling point and melting point relative to its degree of hydrogen bonding
– Higher density in liquid phase and anomalous negative thermal expansion
– High heat of fusion and heat of vaporization
– High specific heat – drives the Gaia effect
– High dielectric constant (critical to hydrogen transfer)
– Anomalous long-range correlations in its liquid structure
– Anomalous high surface tension, yet low bulk viscosity

* This is due to the fluctuation of hydrogen bonds
• Water has the most hydrogen bonding per unit mass than anything else – why is it a liquid at room

temperature with such low viscosity?

Lecture 13, Feb 9, 2023
Unique Properties of Water and Hydrogen Bonds

• Water’s hydrogen bond network imposes a minimum volume constraint to drive hydrophobic collapse
– This forces minimum volume constraints on structures like proteins and drives folding
– Like how oil forms a sphere in water, but not in hexane

• Hydrogen bonds connect long range forces and makes it flexible so it can flow
• Levinthal’s Paradox: Given the astronomical number of permutations, how can proteins find their

biological structures?
– For every amino acid linkage there’s 3 degenerate orientations, so even just with that there’s 3100

permutations or 1047

– Even sampling one orientation every 10−13 seconds (fastest possible) this would take longer than
the age of the universe

– Yet proteins fold on the order of micro to milliseconds
– Solution: inherent correlations involved in the fluctuations; the assumption that all degrees of

freedom are independent is wrong
– Analogy: What is the optimal strategy to find a parking lot?

* You instructively try to look further out to see more of the lot at once
* In this analogy correlated actions are analogous to seeing more of the lot

Lecture 14, Feb 10, 2023
Molecular Spectroscopy

• Why does a molecule or atom absorb light?
– The incoming photon is an electromagnetic wave, which moves the electron
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– This physically distorts the electron density and changes it into the shape of another stable
configuration, e.g. 2s to 2p

• Spectroscopy measures emission wavelengths
– The spectrum has a finite width which comes from the uncertainty principle, ∆E∆t ≥ ℏ

2 where
∆t is the lifetime of the excitation

– There is also a fundamental line resolution (distance between lines)
• Selection rules exist to determine whether transitions can take place – not all transitions happen

– Transitions are either allowed (high probability) or forbidden (low probability)
– Not a hard yes or no but probabilistic

• The dipole moment µ in an atom creates a potential difference when an electric field (photon) comes
along U = µE

• The expectation value for the electric field to create a dipole moment via the mixing of electron
distributions from the ground and excited states is only nonzero when we have a symmetry

– Example: from an s orbital to p orbital involves a change in symmetry, so the transition is allowed
(symmetry allowed); from 1s to 2s has no change in symmetry so it’s not allowed (symmetry
forbidden)

– The change in l is always ±1
– There must be no spin multiplicity: ∆S = 0

Lecture 15, Feb 13, 2023
Absorption of Photons

• The probability of absorption of a photon by a molecule depends on the dipole strength D0A = ∥µ⃗0A∥2

where 0 is the ground state and A is the excited singlet state
• Beer’s law: I(λ)

I0(λ) = e−ε(λ)Cb

– Exponential decay of transmitted light intensity
– C is the amount of material (concentration)
– b is the path length
– ε is the molar absorptivity (absorption strength)

Vibrational Energies
• Harmonic oscillator is a very good approximation for the potential
• The true potential is the Morse potential
• Molecules have dipole moments, which allows absorption of electromagnetic radiation

– dµ
dr > 0, i.e. the electric dipole must change with bond length during a vibration

– This is why oxygen and nitrogen gas don’t cause climate change but water vapour does
* Carbon dioxide is normally linear, but when it vibrates there is a dipole

– Vibrational energies are close together so the transitions are infrared
• Due to the deviation between the real potential and the harmonic oscillator, this gives it antiharmonic

character which allows energy redistribution
• Example: water

– 3 normal modes of vibrations (9 DoF from each atom - 3 translation - 3 rotation, to put it in
molecular frame)

– all 3 have dipole moments, so they are all IR active, making it a very good infrared absorber
• Quantum harmonic oscillator: U = 1

2kx
2

– Boundary conditions: symmetry, and approaches zero for x → ∞
– Solution has energies given by E = 1

2(n+ 1)hν

– This has a zero point energy of 1
2hν – even at 0 kelvin, atoms are still moving
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* This is due to the uncertainty relation
– Energies are equally spaced, unlike the particle in a box
– The actual wavefunctions are given by ψn(x) = Nne

−β2x2/2Hn(βx), where n is an integer quantum

number, β =
√
mv

h
, and Hn are the Hermite polynomials

Figure 1: Shapes and energies of the quantum harmonic oscillator solutions

Lecture 16, Feb 16, 2023
IR Spectroscopy

• With infrared light we can see the vibrational motion of atoms in a bond
• A vibrating molecule behaves like two masses joined by a spring
• The potential is U = 1

2kx
2

– k is the force constant related to the bond strength – double and triple bonds are stronger and
have larger k

– The same resonant frequency works also in the quantum case

• In a real molecular bond the potential differs, giving it an anharmonic character : E =
(
v + 1

2

)
hν −

x

(
v + 1

2

)2
hν

– This allows the states which are otherwise stationary to move
– The deviation from the harmonic oscillator potential makes different modes coupled which allows

for energy transfer
– ∆v = ±1

• Using the absorbance spectrum we can figure out what bonds and structures exist in an atom
– The width of the lines tell you the lifetime, which comes from the Heisenberg uncertainty principle

• To calculate the number of vibrational modes:
– Each atom has 3 degrees of freedom
– For a nonlinear molecule subtract 6 degrees (3 translational + 3 rotational of the base atom)
– For a linear molecule subtract 5 degrees (3 translational + 2 rotational of the base atom)

• Spin multiplicity selection rule: ∆S = 0
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Transitions of an Excited Molecule
• When a vibration is excited, it first undergoes internal conversions (between vibrations), and then falls

down back to the ground state via fluorescence from the bottom level
– With high energy the vibrational energy levels are a lot closer together so energy transition happens

very quickly
• The triplet is lower in energy than the singlet (Hund’s rule)

– A singlet state is when an electron undergoes a transition and ends up with opposite spin with
another lone electron

– A triplet state is where both are spin up or down
– The triplet is always lower energy than the singlet state by Hund’s rule
– Singlet states can flip to the triplet through intersystem crossing, due to the orbital angular motion

generating a magnetic field
• Radiative transitions are when photons are absorbed or emitted; non-radiative transitions are when

energy is transferred between states in a molecule or to the surroundings (internal conversion)

Lecture 17, Feb 17, 2023
Combining Electronic and Vibrational Spectra

• The electronic transition happens much faster than nuclear motion; so this limits where we can land on
the upper state

– This is a vertical transition
– The favoured transitions are to vibrational states that have the same probabilities before and after

the transition (there is more overlap)
– In the excited state there is a slight distortion; the atoms move further apart because they are

higher energy, and electron density between atoms is depleted

Figure 2: Overlap between vibrational wavefunctions decides transition probability

• After the electronic transition, internal transitions happen between vibrational states
– This happens very fast because there are a lot of vibrational motions

• After falling to the vibrational ground state, it then falls back down the electronic transition and emits
a photon (fluorescence)

– This transition probabilities is determined in the same way as going up
• Phosphorescence happens after inter system crossing
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– This is much weaker because it’s less likely, but it’s longer lived
– e.g. old CRT monitors

• The spectrum of an atom is a sharp line, for a diatomic atom there are multiple lines that begin to
merge together, and for a polyatomic atom the lines completely merge together

• As proteins unfold, their spectrum shape changes – we can watch DNA unfold in transcription in real
time using this

Figure 3: Summary of possible transitions for excited molecules

Lecture 18 (2-1), Feb 27, 2023
Overview of Thermal Physics

• Systems of particles typically exhibit universal behaviour: behaviour that applies to all systems,
regardless of composition

• e.g. speed of particles in any gas that isn’t too cold or too dense follows a Maxwell-Boltzmann speed
distribution n(v) ∝ ve−kv2

in 2D, n(v) ∝ v2e−kv2
in 3D

• Statistical mechanics forms an “explanation” of thermodynamics, providing a bridge between the
microscopic and the macroscopic, through the main postulate of SM

• What do we need to describe a system of N particles microscopically?
– This gives the most detailed description
– In classical mechanics we would have r⃗i(t), ˙⃗ri(t) for i = 1, · · · , N
– For large N (on the order of 1023) this would be hopeless to compute and useless to interpret

• To describe them macroscopically instead we use:
1. The number of particles N
2. The volume V
3. The pressure p
4. The temperature T

• Statistical mechanics connects these two
• Note both thermodynamics and statistically mechanics deal with systems in thermodynamic equilibrium:

1. The system is uniform throughout its volume (density, pressure, temperature)
2. These properties do not change in time
3. No macroscopic fluxes – on average the net flow through any surface is zero

• Ideal classical gases have many particles, can be treated as point like objects classically and obeys the
ideal gas law pV = NkT where k is the Boltzmann constant k = 1.38 × 10−23 J/K
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Lecture 19 (2-2), Mar 2, 2023
Temperature as a Measure of Average Kinetic Energy

• Several assumptions:
– Molecules are uniformly distributed in space (at TD equilibrium)
– Velocities are isotropically distributed (i.e. the number of particles with velocity in any given

direction is the same)

* This means 1
N

N∑
i=1

vxi = 0 since there are always the same number of particles going in the

positive vs. negative directions
– The major assumption of the molecular model: all molecules have the same average speed in time

* Let 1
N

N∑
i=1

v2
xi = v̄2

* For now we assume all molecules move with the same speed that is the average
• Consider one wall with area A; what is the average force exerted on the wall due to the molecules?

– How many molecules collide with the wall in time ∆t?
* Consider a volume formed by extending the area A a distance L into the gas, where L = v̄∆t
* Assume all molecules in the volume are moving either in the +x or −x directions (by isotropy

this means each would have half the molecules)
• We can integrate over solid angles if we don’t make this assumption, but the conclusion is

the same
• Combined with the speed, this means all molecules in the box that are moving in the +x

direction would hit the wall, and no molecules outside the box will hit the wall (i.e. half of
the molecules hit the wall)

* Therefore the number of molecules that hit is 1
2
N

V
V = 1

2
N

V
LA = 1

2
N

V
v̄∆tA

– What is the force caused by the collisions?
* Each molecule has momentum mv̄, which becomes −mv̄ after colliding with the wall; therefore

the total momentum transferred is 2mv̄
* Total momentum transferred is then N

V
mv̄2∆tA

* Since F = dp
dt the force is N

V
mv̄2A

– Therefore the pressure produced by this is mv̄2N

V

• Bring in the ideal gas law: p = kT
N

V
= mv̄2N

V
, we get the conclusion that kT = mv̄2

– Therefore temperature is a measure of the kinetic energy
– But note v̄ is only in the x direction - what if we bring in the other directions?
– With our isotropic assumption, we know that v̄ is the same in any direction
– Now consider v⃗2 = 1

N

∑
i

∥v⃗∥2 = 1
N

∑
i

v2
xi + v2

yi + v2
zi = 3v̄2

– Therefore kT = mv̄2 = 1
3mv⃗

2 =⇒ 1
2mv⃗

2 = 3
2kT

• v⃗2 = 3kT
m

let vrms =
√
v⃗2 =

√
3kT
m

– If we plugin numbers for e.g. nitrogen, we get hundreds of meters per second
– This is also roughly the speed of sound

Important

For an ideal gas, 3
2kT is the average kinetic energy of the molecules in the gas
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Classical Equipartition Theorem
• T being a measure of average kinetic energy is an example of the classical equipartition theorem, which

is proven using SM

Theorem

Classical equipartition theorem: In thermodynamic equilibrium of a classical ideal gas, the average
energy per degree of freedom of a molecule is:

1. Translational: 1
2kT

2. Rotational: 1
2kT

3. Vibrational: kT

• Depending on the kind of molecule, we can calculate what degrees of freedom it has and how many,
from which we can calculate the average energy from the temperature

• This allows us to predict the heat capacity of gases
– Actual heat capacities deviated from the prediction of the classical equipartition theorem because

of quantum mechanics
• e.g. For a diatomic molecule, each atom has 3 DoF; overall in the molecule there are 3 translational

degrees of freedom of the CoM, and 2 rotational degrees of freedom, and 1 vibrational degree of freedom
– Therefore the average energy is 3

2kT + 2
2kT + kT = 7

2kT

– U = N
7
2kT

• The idea of the equipartition theorem is that through collisions energy is distributed into all degrees of
freedom (translational, rotational and vibrational)

• The reason reality deviates from this is due to the quantized vibrational energies in ℏω (since vibrations
are harmonic oscillators), so if a molecule doesn’t have enough energy it can’t transfer energy into the
vibrational degrees of freedom

– If kT ≫ ℏω then this won’t have much effect, but at much lower temperatures this becomes
important

Lecture 20 (2-3), Mar 3, 2023
Equipartition Theorem Continued

• For an n-atom molecule, there is always 3n total degrees of freedom since there are 3 DoF for each atom
– For linear and nonlinear molecules, CoM translation takes up 3 DoF
– For nonlinear molecules, rotation takes up 3 DoF; for linear molecules rotation only take up 2 DoF

because rotation around the axis of symmetry is not a degree of freedom
– This leaves 3n − 6 vibrational degrees of freedom for nonlinear molecules and 3n − 5 for linear

molecules
• This gives energy per molecule of 3kT2 + 2kT2 + 2(3n− 5)kT2 = kT

2 (6n− 5) for a linear molecule and
kT

2 (6n− 6) = (3n− 3)kT for a nonlinear molecule

Heat and Work
• For ideal gases energy is given by the equipartition theorem, equal to the number of particles times the

energy of each particle
– The ideal gas assumes the total energy is just the kinetic energy; this implies that the particles

don’t interact, because interactions would require potential energy
– However interactions between particles is required for the gas to reach equilibrium
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– An ideal gas is a gas where there is just enough interaction to enable the gas to go to TD equilibrium,
but interactions are rare enough that the ideal gas law holds

• How do we change the energy of a system?
– We will use a diatomic molecule, U = 7

2kTN
– Consider putting a thermostat (a very large thermal body) with temperature T ′ in contact with a

small body of temperature T ; heat transfer will occur
– After a while, the thermostat is removed, and now we have a system with temperature T ′

– The initial energy is Ui = 7
2NkT , the final energy is Uf = 7

2NkT
′, which give a difference in

energy of 7
2Nk(T ′ − T ) which is the total heat absorbed

– This is the first law of thermodynamics, ∆U = Q+W or energy conservation
• When we do work on the system, the particles that hit the wall will bounce back with greater velocity;

this is why doing work on the system heats it up

Heat Capacity

Definition

The heat capacity is the amount of energy needed to change T by 1 degree

• However we have to specify which quantity we would like to keep fixed, whether that’s V or p or
something else

• We know U = 7
2NkT which gives a heat capacity of 7

2Nk
• Heat capacity should stay constant with increasing T , but it does not – the constant only occurs around

temperatures of 10000K
– Below this temperature the heat capacity increases to discrete levels with increasing T
– This is because of quantum mechanics

• At low temperatures there are only translational movements, then vibrational and transitional, and
finally rotational, vibrational and translational at higher temperatures

– At lower temperatures the collisions do not have enough energy to excite vibrational/rotational
modes

– Because of quantum mechanics, the molecules can either not rotate but rotate with some minimum
energy

Lecture 21 (2-4), Mar 6, 2023
Discrepancy in Heat Capacity – Effect of Quantum Mechanics

• Based on quantum mechanics, can we estimate the energy where molecules have enough energy to
excite rotations?

• Consider a hydrogen molecule: interatomic distance of 0.7 × 10−10 m and mass of 1 × 10−27 kg

– The momentum is L = Iϕ̇ classically, rotational energy is 1
2Iϕ̇

2 = L2

2I
– Moment of inertial is given by I ∼ mr2

– Angular momentum is quantized, we can consider it as either L = 0 for no rotation or L ≥ ℏ2 for
some rotation

– Therefore the minimum energy of rotation is E ∼ ℏ2

I
– I ∼ 1 × 10−27 kg(0.7 × 10−10 m)2 = 1 × 10−48 kg m2

– This gives the minimum energy on the order of 1 × 10−20 J
– If we compare this to kT , we get that a temperature on the order of 1000K is needed to have

enough energy to excite rotations
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First Law of Thermodynamics
• ∆U = Q+W , where Q is the heat absorbed and W is the work done on the system
• Consider a piston of area A being pushed against a gas with pressure p, volume V for length dx

– dx is positive of the gas expands, negative if it contracts
– The force is pA, therefore the work done by the gas is pA dx = p dV
– Let dU = δQ− pdV , where δQ is some small amount of heat resulting from this

* Note the sign on p dV since here it’s the work done on the gas, not by the gas
– This is the first law expressed in terms of infinitesimal changes

Isothermal Processes
Definition

A quasistatic process is one where the process is slow enough such that the system is in thermodynamic
equilibrium for every moment of the process

• How do finite changes of V affect the state of the system?
– We need to make assumptions about the nature of the change
– This question is easy to answer if the process is quasistatic

* In a non-quasistatic expansion we’ll get a depletion of gas density near the piston as it moves,
so the force it experiences will be less

* Therefore the work done in a quasistatic expansion is strictly larger than the work in a
non-quasistatic expansion

– For such processes we can find the work done by W =
� Vf

Vi

p(V, T ) dV

* If the temperature is constant (isothermal process), then W =
� Vf

Vi

NkT

V
dV = NkT ln

(
Vf

Vi

)
* To keep the process as isothermal we need to keep it in contact with a thermal reservoir, and

now the process must be slow enough that we get both pressure and temperature equilibrium

– For an isothermal process ∆U = Q−NkT ln
(
Vf

Vi

)
, but since U is dependent only on T for an

ideal gas, we must have Q = NkT ln
(
Vf

Vi

)
• For an isothermal process pV = const so on a P-V diagram this shows up as a curve P = C

V
– The area under this curve is the work done by the process

Lecture 22 (2-5), Mar 9, 2023
Adiabatic Processes

• In an adiabatic process there is no heat exchange between a system and its surroundings (Q = 0)
• Since there is no heat ∆U = −p∆V at every step
• From U = f

2NkT (where f = 3 for monoatomic gases and f = 7 for diatomic gases) we have

∆U = f

2Nk∆T so −p∆V = f

2Nk∆T

• Bring in the ideal gas law Nk∆T = ∆(pV ) = V∆p+p∆V , combine with above −p∆V = f

2 (V∆p+p∆V )

• −
(

1 + f

2

)
p∆V = f

2V∆p =⇒ −
1 + f

2
f
2

∆V
V

= ∆p
p

=⇒ 2 + f

f

dV
V

= dp
p

• −2 + f

f
d lnV = d ln p, integrate to get −2 + f

f
ln V2

V1
= ln p2

p1

14



• Therefore
(
V1

V2

) 2+f
f

= p2

p1
, or V

2+f
f

1 p1 = V
2+f

f

2 p2

– This means V
2+f

f

2 p2 is a constant

– 2 + f

f
= 1 + 2

f
= γ > 1, which means that for the same pressure, the volume will be smaller; or

for the same volume, the pressure will be smaller
– The adiabatic curve on the P-V diagram falls steeper than the isotherm

Heat Capacities

• In general C = Q

∆T is ill-defined because Q depends on the environment, i.e. how the gas is being
heated

• If V is constant then ∆U = Q since there is no work; therefore we can define a constant volume heat

capacity Cv =
(

∆U
∆T

)
V

=
(
∂U

∂T

)
V

– For an ideal gas U = f

2NkT so CV = f

2 kN
• If P is constant, Q and U have no straightforward relationship

– Q = ∆U + p∆V

– Cp =
(

∆U + p∆V
∆V

)
p

=
(

∆U
∆T

)
p

+ p

(
∆V
∆T

)
p

– Cp =
(
∂U

∂T

)
p

+
(
∂V

∂T

)
p

for any gas in general

– For the ideal gas
(
∂U

∂T

)
p

=
(
∂U

∂T

)
V

= f

2NkT are the same since energy only depends on the

temperature

–
(
∂V

∂T

)
p

=
(
∂

∂T

NkT

p

)
p

= Nk

p

– Combing these we get Cp = f

2Nk +Nk = f + 2
2 Nk = f + 2

2 Cv = γCv

– Cp > Cv always holds true for any gas
* For an ideal gas it is because some of the energy goes towards the expansion of the gas
* This also works for everything else even if it contracts when being heated

Directional Asymmetry of Time
• e.g. heat only flows from hot to cold, diffusion only happens from dense to diffuse
• This is due to the randomness inherent to a system of many bodies
• There is one unifying principle, the fundamental postulate of statistical mechanics: Consider a closed

(constant energy, isolated) system of many particles, in the system every accessible microstate is equally
likely

Lecture 23 (2-6), Mar 10, 2023
Fundamental Postulate of Statistical Mechanics

• In an isolated gas of many particles (N ∼ 1023) there are many ways we can distribute a fixed amount
of energy E amount the particles

– Each of these ways the energy is distributed is a microstate; there are many such microstates
– The total energy is a macrostate

• Collisions lead to a change in the way energy is distributed, leading to randomness
• The fundamental postulate of statistical mechanic says that all accessible microstate is equally likely

15



– Accessible microstates are ones that have the right amount of total energy that matches a given
macrostate

– We give up the mechanistic description – it’s impractical to know the trajectory of each particle
– Instead we replace it with the probabilistic distribution

* As N gets large, probabilities become certainties as probability distribution peaks become
sharper

• The multiplicity function is the number of microstates accessible to a given macrostate
– Once you have the multiplicity function of a system, you can deduce everything about the system

Electronic Paramagnet
• A material that has a macroscopic magnetic moment
• We’ll model the microscopic magnetic moments as spins

– The 2 degrees of freedom are the spins
– si = { +1,−1 } for i = 1, · · · , N

• We ignore spin-spin interaction, spin-atom interaction
– Without these simplifications this would be extremely hard to solve
– However without spin-spin interaction this system does not reach equilibrium

• In this N -spin system we have 2N possible microstates
– Microstates are discrete and finite – this is not always the case

• Motivation: If we put a magnet in a magnetic field, it has energy U = −µ · B⃗, which is minimized when
the 2 vectors are aligned

– Therefore Ui = −µ0Bsi so U = −µ0B

N∑
i=1

si = −µ0BS where S is the total spin, the sum of the

individual spins
• S is the macrostate, which can be observed macroscopically

– S is an integer in the range [−N,N ], in increments of 2 (since flipping a spin changes the total
spin by 2)

– This gives us a total of N + 1 possible macrostates
* Instead of talking about S, we just need to specify N↑ since N↓ = N −N↑
* S = 2N↑ −N
* There are N + 1 possible values of N↑ so there are N + 1 macrostates

– U , S, N↑ can all be used equivalently to specify a macrostate
• For this system, the multiplicity function is easy to calculate

– Ω(N↑, N) =
(
N

N↑

)
= N !

(N −N↑)!N↑!

Lecture 24 (2-7), Mar 13, 2023
Einstein Solid

• Consider a collection of N particles, with each particle being in a fixed harmonic oscillator potential;
each particle’s potential is independent of other particles

• Recall the allowed energy levels are ℏω
(
n+ 1

2

)
, so each particle is described by its energy level

n = 0, 1, 2, · · ·
– n is also called the number of quanta in the given state

• The overall energy of the system is U = ℏω
N∑

i=1
ni + ℏω

2 N

– Note we will ignore the 1
2 since it’s only a constant offset that makes no difference

• This makes our microstate { n1, · · · , nN } and our macrostate q =
N∑

i=1
ni

16



– Unlike in the electronic paramagnet, now we have a (countably) infinite number of microstates
since ni has no upper limit

– This is much more realistic because in real systems there will be a small number of particles with
a lot of energy (but the energy also can’t be infinite)

• What is the multiplicity Ω(q,N)?
– If we think of each of the particles as a box, and q as the total number of balls (each ball is an

energy unit), this becomes a partitioning problem of how many ways we can put q identical balls
into N boxes

– We can consider each “divider” between two partitions as an item, then each permutation of the
dividers and the “balls” is one microstate; there are N − 1 dividers

– However we can swap around the dividers and the balls and the microstate is the same, so we
need to divide through by the number of ways to permute the dividers, and the ways to permute
the balls

– Ω(q,N) = (N − 1 + q)!
(N − 1)!q!

Two Einstein Solids Together
• For a single system, by the postulate of SM, the probability of any accessible microstate given a

macrostate q is 1
Ω(q,N)

• Consider bring together two Einstein solids with NA, qA and NB , qB , initially isolated from the world
and each other, then brought into contact

– We will allow for an unspecified processes to bring this system to TD equilibrium (however in our
simple model this can never happen)

• The combined system will be a single system with N = NA +NB , q = qA + qB

– In equilibrium the two systems still have number of particles NA, NB but the energy can flow; we
don’t know what the individual energies are, we just know q′

A + q′
B = q = qA + qB

– In thermal equilibrium, what are the probabilities of different values of q′
A, q

′
B occurring?

• In the combined system, all microstates are equally likely; for a given value of q′
A, what is the multiplicity?

– The total multiplicity is Ω(q′
A, NA)Ω(q − q′

A, NB), which is directly proportional to the probability
of the macroscopic distribution q′

A since each microstate is equally likely
– The key takeaway is that the more microstates correspond to a given distribution, the more likely

that distribution is
– It turns out that the distribution giving the largest value of Ω(q′

A, NA)Ω(q − q′
A, NB) is when the

energy is evenly divided so that the average energy per particle is the same in both solids
– In the limit as N → ∞, the probability distribution becomes delta functions

Lecture 25 (2-8), Mar 16, 2023
General Thermal Equilibrium – Statistical Definition of Temperature and Entropy

• We don’t need to be restricted to the Einstein solid
• Consider a system 1 with energy E1, system 2 with energy E2, being brought together an allowed to

reach thermal equilibrium (N,V are not exchanged)
• In TD the overall system has energy E = E1 + E2 with E′

1 = E

2 − ∆ distributed to the first system,

E′
2 = E

2 + ∆ distributed to the second system

• The probability of having a particular ∆ is P (∆) =
Ω1( E

2 − ∆)Ω2( E
2 + ∆)∑E/2

∆̃=−E/2 Ω1( E
2 − ∆̃)Ω2( E

2 + ∆̃)
• We wish to find max

∆
P (∆)

– ∂

∂∆Ω1

(
E

2 − ∆
)

Ω2

(
E

2 + ∆
)

= 0
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–
∂Ω1

(
E
2 − ∆

)
∂
(

E
2 − ∆

) (−1)Ω2

(
E

2 + ∆
)

+
∂Ω2

(
E
2 + ∆

)
∂
(

E
2 + ∆

) (1)Ω1

(
E

2 − ∆
)

= 0

– 1
Ω1
(

E
2 − ∆

) ∂Ω1
(

E
2 − ∆

)
∂
(

E
2 − ∆

) = 1
Ω2
(

E
2 + ∆

) ∂Ω2
(

E
2 + ∆

)
∂
(

E
2 + ∆

)
– ∂

∂
(

E
2 − ∆

) ln Ω1

(
E

2 − ∆
)

= ∂

∂
(

E
2 + ∆

) ln Ω2

(
E

2 + ∆
)

– ∂

∂E′
1
k ln Ω1(E′

1) = ∂

∂E′
2
k ln Ω2(E′

2)

* The left hand side is a property of system 1, the right hand side is a property of system 2
* This means as two bodies are brought into contact, it will change until this quantity

∂

∂E
k ln Ω(E) becomes the same for the two bodies

– This leads us to define ∂

∂E′
1
k ln Ω1(E′

1) = 1
T1(E′

2, N, V ) ,
∂

∂E′
2
k ln Ω2(E′

2) = 1
T2(E′

2, N, V )
* Temperature is a function of E,N, V

– We can also define entropy as k ln Ω(E); since the macrostate that has the largest multiplicity is
the most likely, this means entropy will be maximized

Definition

The entropy of a system is defined as

S(E,N, V ) = k ln Ω(E,N, V )

The temperature of a system is defined as

1
T (E,N, V ) =

(
∂S

∂E

)
N,V

• Since each macrostate must have Ω ≥ 1, we have S ≥ 0
– Consider the case of the electronic paramagnet, the state N↑ = N or N↑ = 0 only have one

microstate, so Ω = 1, S = 0
* This a very ordered system

– If N↑ ∼ N

2 we have a lot of microstates, so we have S ≫ 1; this is a disordered system
– This is why entropy is sometimes referred to as the “degree of disorder”

* In this case, “disorder” is how many microstates a macrostate can exist in
– We can also consider entropy as the inverse of how much information you have: in the N↑ = N

state we know exactly which microstate the system is in, but in the N↑ ∼ N

2 state there are
many microstates that the system could be in, so we have very little information about the exact
microstate

• Also notice T ≥ 0 because ∂S

∂E
≥ 0 for most “normal” systems (note this is not true for the electronic

paramagnet)
– If you heat the system, energy is introduced so there are more ways to distribute the energy,

therefore entropy should also increase

Lecture 26 (2-9), Mar 17, 2023
2 Einstein Solids

• The thermodynamic limit: in the limit as N → ∞, V → ∞, E → ∞ (all extensive properties), but
keeping the density and energy density E

N
,
N

V
fixed, the results of statistical mechanics become certainties
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instead of probabilistic
• Recall for the Einstein solid E = ℏωq,Ω = (N − 1 + q)!

(N − 1)!q!
– We keep q

N
fixed, but we could either have q

n
≪ 1 or q

n
≫ 1

• First consider the classical limit, where q

n
≫ 1

– For large N the multiplicity function just becomes (N + q)!
N !q!

– ln Ω = ln(N + q)! − lnN ! − ln q!
– Stirling approximation: lnn! ≈ n lnn for large n

– ln Ω ≈ (N+q) ln(N+q)−N lnN−q ln q = N ln
(
q

(
1 + N

q

))
+q ln

(
q

(
1 + N

q

))
−N lnN−q ln q

– ln Ω = N ln q +N ln
(

1 + N

q

)
+ q ln q + q ln

(
1 + N

q

)
−N lnN − q ln q

– ln Ω ≈ N ln q +N
N

q
+N −N lnN = N ln q +N ln e−N lnN = ln qN + ln eN − lnNN

– ln Ω = N ln qe
N

or equivalently Ω(q,N) =
(qe
N

)N

– Entropy is S = kN ln qe
N

= kN ln Ee

ℏωN
– 1
T

= ∂S

∂E
= kN

E
or E

N
= kT

* This is equipartition!
– Note the assumption that q

N
≫ 1 =⇒ kT ≫ ℏω

• What about q

N
≪ 1?

– Ω(q,N) = (N + q)!
N !q! is symmetric with respect to switching q and N

– This means we can do this case in exactly the same way just by swapping N and q

– Ω =
(
Ne

q

)q

– S = k ln
(
Ne

q

)q

= k
E

ℏω
ln Neℏω

E

– 1
T

= k

ℏω
ln
(
Nℏω
E

)
– E

N
= ℏωe− ℏω

kT

* Equipartition does not hold
* If temperature is not enough to excite vibrational normal modes the energy per particle drops

off exponentially

Distribution of Energies
• What is the probability of the energies of the system being different?
• Take two Einstein solids with the same N and flow

• P (x) ∼ ΩA

(q
2 − x

)
ΩB

(q
2 + x

)
=
((

q
2 − x

)
e

N

)N (( q
2 + x

)
e

N

)N

=
(
e2

N2

)N (
q2

4 − x2
)N

• Take the ratio P (x)
P (0) =

(
q2

4 − x2
)N

(
q2

4

)N
=
(

1 − qx2

q2

)N

• ln P (x)
P0

= N ln
(

1 −
(
x
q
2

)2
)
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• |x|
q
2

is the relative energy balance

• Consider small energy balances, we can approximate it as −N
(
x
q
2

)2

• P (x) = P0e
−N

(
x
q
2

)2

• As N → ∞, P (x) becomes nonzero only at x = 0, making it a delta function, so the distribution of
temperatures is now a certainty

Lecture 27 (2-10), Mar 20, 2023
Thermodynamic Potential

• The postulate directly implies that for a closed system that reaches thermodynamic equilibrium, it is
most likely to find itself in a state of maximum S

• This can be seen as an alternative way to state the second law, that S is always increasing
• For an isolated system (constant E), we say that the entropy is the “thermodynamic potential”

– Just like how a classical system tries to minimize its potential (e.g. a falling object), the system
will try to maximize its entropy

– Just like F⃗ = −∇⃗U is the driving force for a classical system, 1
T

= ∂S

∂E
is the driving force for

reaching thermal equilibrium
* In equilibrium forces are in balance, just like how in thermal equilibrium the temperature

must be in balance
• Since ∂S

∂V
is the pressure and ∂S

∂N
is the chemical potential, the partial derivatives of S determine the

“force towards equilibrium”

General Properties of Entropy
• For now, only consider E
• For the Einstein solid, under q

N
≫ 1 =⇒ kT

ℏω ≫ 1 we had S(E) = kN ln Ee

Nℏω
– For this system and all “normal” systems, the slope of S(E) to E is always positive (and so T > 0)

– Additionally, this graph flattens out with increasing E; therefore ∂2S

∂E2 , and so with increasing E,
∂S

∂E
= 1
T

goes down or T goes up
* This means that the heat capacity is positive

– Such systems are thermodynamically stable
* For systems held together by gravity (e.g. stars), this pattern is broken and the system actually

cools down with more energy
• Recall that for the paramagnet Ω(N↑, N) = N !

N↑!(N −N↑)!
– This is not a “normal” system since it has a maximum energy
– The plot of Ω against N↑ has a maximum at about N↑ = N

2
– To convert this to energy, we have to flip the graph (since N↑ = N has minimum energy)
– The entropy curve is concave down with a maximum

* In the first half of the curve between Umin and 0 the temperature is positive and increasing
with E

* In the second half of the curve, the temperature is negative
• This is a metastable region that can only exist for a short amount of time

* At the maximum, the temperature becomes infinite
– When the total spin is maximum, we have minimum energy; as we heat up the magnet, the total

spin decreases with temperature
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* The total spin at high temperature is S ∼ µ0B

kT
(Curie’s law)

Lecture 28 (2-11), Mar 23, 2023
Ideal Gas (Sackur-Tetrode Formula)

• For a given U , how many microstates are there?

• U =
N∑

i=1

p⃗2
i

2m =⇒
N∑

i=1
p⃗2

i =
N∑

i=1
p2

xi + p2
yi + p2

zi = 2mU

– How many ways can be distribute this momentum to get the same U?
– We want the sum of the squares of 3N numbers to equal 2mU
– This is a sphere that lives in 3N -dimensional space, or S3N−1 in R3N , with radius r2 = 2mU =⇒
r =

√
2mU

• px, py, pz are all quantized in units of πℏ
L

(where L3 = V ), like in the case of the infinite square well;
these points form a grid in space, the sphere will hit some of these grid points, and each hit is a
microstate

– We only need the sphere to be close to these grid points
– We expect that the number of hits is proportional to the area of the sphere, proportional to r3N−1,

with r defined by the energy

• The area of a 3N − 1-dimensional sphere in 3N dimensions can be shown to be 2π 3N
2

Γ
( 3N

2
)R3N−1

– If 3N
2 is an integer this is 2π 3N

2( 3N
2 − 1

)
!

– Therefore Ω(N,U) ∼ 2π 3
2N( 3

2N − 1
)
!

(√
2mU

)3N−1
, but we have to fix it first:

* The dimensions aren’t consistent: to fix it, we divide
√

2mU by a factor of πℏ
L

first to make it
unitless and make the units match
• This basically converts the pi to ni

* The ni are always positive, so the pi must all be positive; this means we have to reduce the
surface area by a factor of 2 for every axis
• e.g. for a circle, if we restrict it to x, y > 0, we have to divide by a factor of 4; for a sphere,

restricting it to the first quadrant divides by a factor of 8
* The particles should be indistinguishable according to quantum mechanics, which means that

if we swap the momenta of two particles, it stays in the same microstate
• There are N ! ways to permute the momenta, which all lead to identical microstates, so we

have to reduce Ω by a factor of N !
• This is called the Gibbs factor, which he derived before QM

– Ω(N,U) = 2π 3
2N

N !
( 3

2N − 1
)
!23N

(√
2mUL
πℏ

)3N−1

• Now to find the entropy S = k ln Ω

– First use Stirling’s approximation, N ! =
(
N

e

)N

and ignore the -1

– Substitute L = V
1
3

– Ω(N,U) = eN

NN

2
(23)N

2(π 3
2 )N (e 3

2 )N

(3 3
2 )N (N 3

2 )N

V N

(πℏ)3N

(
(2mU) 3

2

)N

= ... I gave up ...
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– S = k ln Ω

= k ln 2 + kN ln
(((

4πmU
N

) 3
2 1

(2πℏ)3
V

N

)
+ 5

2

)

= kN ln
(((

4πmU
N

) 3
2 1

(2πℏ)3
V

N

)
+ 5

2

)
* This is known as the Sackur-Tetrode formula for the entropy of an ideal gas

– Taking 1
T

= ∂S

∂U
= Nk

3
2

1
U

=⇒ U = 3
2kNT which is the same as the one we got from

equipartition
• What can we learn from this formula?

– S is on the same order as kN
– For all the extensive quantities, e.g. N,U, V , if we double them, the entropy also doubles
– S increases with U , and levels off – this is a normal system, the temperature increases with energy

and we have a positive heat capacity
– If we lower U enough, then eventually the stuff inside the log will become less than 1, and we’ll

get a negative entropy, which is impossible – therefore this formula does not work for gases with
very low energy

Lecture 29 (2-12), Mar 24, 2023
When is a Gas No Longer Ideal?

• S(U,N, V ) = kN

(
ln
(
V

N

(
4πmU
2Nh2

) 3
2
)

+ 5
2

)
• From this we can get 1

T
= ∂S

∂U
= Nk

3
2

1
U

so U = 3
2kNT

• Written in terms of temperature, S(T,N, V ) = kN

(
ln
(
V

N

(
2πmkT
h2

) 3
2
)

+ 5
2

)
• For sufficiently low T this will give us a negative entropy, so some assumption must have been violated

for a very cold gas
• The thermal de Broglie wavelength is λ = h√

mkT
(the regular de Broglie wavelength but with

p =
√
mkT )

– Larger mass and temperature decreases the thermal de Broglie wavelength

• Using λ and l3 = V

N
, we get S(T,N, V ) ∼ kN ln l3

λ3
– l is the typical distance between particles
– The ideal gas holds whenever l ≫ λ – that is, the typical distance between the particles is much

larger than their de Broglie wavelength
– When l ≫ λ, the particles don’t feel the quantum effects of the particles; when the two are

comparable, quantum effects become important
• We can make a gas a “quantum gas” either by increasing the density (decreasing l) or lowering the

temperature (increasing λ)
– This is why we said that the ideal gas law only works when the gas is “not too cold” and “not too

dense”

Statistical Definition of Volume
• Recall that to define temperature, we considered two systems being brought together where only energy

can be exchanged; to define pressure, we consider the same case, but now volume can be exchanged
(i.e. one system expands while the other contracts)
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• Consider 2 systems, with N1, N2, V1, V2, E1, E2, and V1 + V2 = V,E1 + E2 = E are both fixed; we wish
to find the equilibrium state (that is, we want to maximize Stot = S1 + S2, subject to E1, V1)

• S = S1(E1, V1, N1) + S2(E − E1, V − V1, N2)
– First, we need ∂S

∂E1
= ∂S

∂V1
= 0

– As we previously studied, ∂S

∂E1
= 0 gives us ∂S1

∂E1
= ∂S2

∂E2
=⇒ 1

T1
= 1
T2

– ∂S

∂V1
= ∂S1

∂V1
+ ∂S2

∂(V − V1) (−1) = 0 =⇒ ∂S1

∂V1
− ∂S2

∂V2
= 0

– Therefore equilibrium occurs when ∂S1

∂V1
= ∂S2

∂V2
, subject to V1 + V2 = V

– ∂S

∂V
has units of pressure over temperature

• This allows us to define the pressure p such that p

T
= ∂S

∂V
, so that two systems come to equilibrium in

volume when the pressure of the two systems are equal
• Let’s plug in our new definition of pressure into the Sackur-Tetrode formula
• p

T
= ∂S

∂V
= kN

V
• Rearrange this and we get pV = NkT which is the ideal gas law!
• Note that in order to have exchange of volume, there must be exchange of energy (because moving the

wall would do work); the problem of exchanging volume without exchanging energy is ill-defined

Lecture 30 (2-13), Mar 27, 2023
Clausius’ Definition of Entropy

• Consider keeping N and V fixed, then for infinitesimal changes ∆U , ∆S
∆U = 1

T
=⇒ ∆S = ∆U

T

• Since we keep volume fixed, ∆U = δQ therefore S = δQ

T
– this is the Clausius definition of entropy

(the original thermodynamic definition of entropy)
– In the Clausius definition only changes in S are defined

• Clausius also postulated that ∆S ≥ 0 in a closed system, which is formulated as the second law
• S = δQ

T
and ∆S ≥ 0 implies a unidirectional flow of heat; heat always flows from a hotter object to a

colder object, so that the loss in entropy of the hotter object is less than the gain in entropy of the
colder object

• Since cv = ∆U
∆T we have ∆S = ∆U

T
= cv

∆T
T

– Integrating, we have S(T2) − S(T1) =
� T2

T1

cv(T )
T

dT

– This allows us to measure changes in entropy

Other Properties of Entropy

• For an ideal gas, cv = 3
2Nk which is independent of T

– S(T2) − S(T1) =
� T2

T1

3
2Nk

T
dT = 3

2Nk ln T2

T1
– As T2 → 0, we have S(T2) − S(T1) → −∞; but S is log of multiplicity, so it should be finite and

positive
– This is another way that we can show the classical ideal gas model fails

• In order to make sure S stays finite as T2 → 0, we must place constraints on cv

– A sufficient condition is to have cv ∼ Tα, α > 0 so that when we integrate we get 1
α
Tα, which is

finite as T → 0 if α > 0
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– This is known as Nernst’s theorem

Metals as Ideal Quantum Gases (Fermi Gases)
• In a metal electrons are delocalized and freely float around, but they are very dense and have large de

Broglie wavelengths due to their tiny mass, so they exhibit quantum behaviour at room temperature
• For such a system cv ∼ aT + bT 3

– The first term comes from the contribution of electrons; the second term comes from contribution
of phonons (quantum waves)

• For “strange metals”, cv ∼ T
p
q

Lecture 31 (2-14), Mar 30, 2023
Chemical (Diffusive) Equilibrium

• Consider once again 2 systems with U1, N1, V1 and U2, N2, V2 being brought together; what happens if
we allow exchange of U and N?

• Initially if we keep the barrier, the energy will exchange such that thermal equilibrium is reached with
systems having U ′

1 and U ′
2

– Note we have to allow exchange of energy because particles carry energy, so we can’t exchange
particles without exchanging energy

• We want to determine U ′′
1 , U

′′
2 , N

′′
1 , N

′′
2 that maximizes entropy: S = S1(U ′′

1 , N
′′
1 ) +S2(U −U ′′

1 , N −N ′′
1 )

– We want ∂S

∂U ′′
1

= 0 =⇒ ∂S1

∂U ′′
1

= ∂S2

∂(U − U ′′
1 )

– And also ∂S

∂N ′′
1

= 0 =⇒ ∂S

∂N ′′
1

= ∂S

∂(N −N ′′
1 )

– Therefore we have that the system property ∂Si

∂Ni
for both systems must be equal

– S has units of energy per temperature, so ∂S

∂N
also has units of energy per temperature

• Define −µ

T
= ∂S

∂N
, where µ is the chemical potential (or diffusive potential)

– µ has units of energy
– Note we defined it with the minus sign, so that the particles end up flowing from regions with

higher chemical potential to lower chemical potential
• Example: ideal gas

– µ

T
= − ∂

∂N
kN

(
ln
(
V

N

(
U

3N

) 3
L
(

4πm
h2

) 3
2
)

+ 5
2

)

= −k ln
(
V

N

(
1
2kT

) 3
2
(

4πm
h2

) 3
2
)

– Where we have replaced U

3N = 1
2kT

– Therefore µ(T, V,N) = −kT ln
(

const
nλ3

d

)
– As the number density n increases, the log goes down, so we need the minus sign to have µ higher

in regions of higher number density
– µ is a proxy for the density

Applications to Chemistry
• Suppose we have a gas of Nh hydrogen atoms occupying some space; as hydrogen atoms bump into

each other, some of them may be ionized so we have some protons Np and electrons Ne

• All 3 gases exist in thermal and chemical equilibrium
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• The equilibrium condition is specified by two of the energies and a ∆ (for every ∆ in hydrogen gained,
we lose ∆ protons and ∆ electrons)

• Note we need to consider each hydrogen has lower energy than a proton and an electron together; to do
this we need to consider the rest energies of the particles to get the ionization energy

• Maximize entropy: nenp

nh
= 1( 4π

h2me
kT
2
) 3

2
= e− I

kT where ne = Ne

V
= Np

V
= np, nh = Nh

V
and I is the

ionization energy, 13.6 eV
– This is known as the Saha equation
– At low temperatures, − I

kT
≫ 1 so nenp ≈ 0 – there is very little interaction because the particles

move slowly
– As the gas is heated, increased particle velocity leads to more interaction and more breakdown

• In general if we have stoichiometric coefficients, we can do the derivation to find each number density
being taken to the power of their stoichiometric coefficient

• We can also express the law as n
νB

B nνC

C

nνA

A

= K(T ), which is known as the law of mass action

• e− I
kT is known as the Boltzmann factor

Lecture 32 (2-15), Mar 31, 2023
Thermodynamic Equilibrium and Maxwell’s Relations

• To actually maximize the entropy S(U, V,N) we need both ∂S

∂U
= ∂S

∂V
= ∂S

∂N
= 0 and for the Hessian

matrix of second derivatives to have negative eigenvalues
• Suppose we have some system with S = S(U, V,N) which is some function; we know dS = ∂S

∂U
dU +

∂S

∂V
dV + ∂S

∂N
dN

– This means dS = 1
T

dU + p

T
dV − µ

T
dN

– In this form, the equation is known as the thermodynamic identity for the entropy
– This equation gives the change in entropy for some change in energy, volume, or number of particles

• We can invert S(U, V,N) to get U(S, V,N), the energy in terms of entropy, volume, and number of
particles

• Solving for dU , we have dU = T dS − p dV + µdN ; this is the thermodynamic identify for the energy
– We can match this to what we get from U(S, V,N)
– This gives us 2 new definitions: p = ∂U

∂V
, µ = ∂U

∂N

• These definitions are collectively known as Maxwell’s relations: 1
T

= ∂S

∂U
,
p

T
= ∂S

∂V
,
µ

T
= − ∂S

∂N
, T =

1
∂S
∂U

p = ∂U

∂V
, µ = ∂U

∂N
• To be a maximum, the Hessian must have all negative eigenvalues
• We define thermodynamic equilibrium to be stable when all these conditions hold:

– cV > 0
– ∂P

∂V
< 0

* Suppose ∂P

∂V
> 0 in some system, then P increases with pressure or v

* In this case pushing on the substance causes is pressure to be even lower, so this is unstable
since the system will just keep on increasing or decreasing in volume

* This arises when we model particles that interact with each other
– ∂µ

∂N
> 0
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Lecture 33 (2-16), Apr 3, 2023
Boltzmann Distribution

• A microcanonical distribution is 1
Ω(U, V,N)

• Consider a system with fixed V and N , with varying E in thermal contact with a thermal reservoir
with energy UR; the system and the reservoir form a closed system with Utot fixed

• The probability of any microstate of the system and the reservoir is the same, 1∑
E′ Ω(E)ΩR(Utot − E′)

• Specify a microstate in the system S by s; what is the probability of S being in a particular microstate
s with energy Es?

– Note we’re not trying to find the probability of the system having energy Es, since there can be
many microstates with the same energy; we’re looking for the probability of each microstate with
this energy

– If the system is in s, the reservoir can be in any microstate with energy Utot = Es

– Therefore we have ΩR(Utot − Es)∑
E′ Ω(E′)ΩR(Utot − E′)

• P (Es̄1)
P (Es̄2) = ΩR(Utot − Es̄1)

ΩR(Utot − Es̄2) = e
1
k SR(Utot−Es̄1 )−SR(Utot−Es̄1 ) where SR is the entropy

• Assume the reservoir is big, so SR(Utot − E) ≈ SR(Utot) − E
∂SR

∂U

∣∣∣∣
U=Utot

(i.e. the changes in entropy

are small enough that we can use a linear approximation)

– P (Es̄1)
P (Es̄2) = e

1
k

(
(Es̄2 −Es̄2) ∂SR

∂U

∣∣
U=Utot

)
= e

1
k ((Es̄2 −Es̄2) 1

T )

– Therefore we find P (Es̄1)
P (Es̄2) = e−

Es̄1 −Es̄2
kT – the relative probability only depends on the difference

in energy and temperature
– P (Es̄1)

e−
Es̄1
kT

= P (Es̄2)

e−
Es̄2
kT

is true for any s̄1 and s̄2, therefore this ratio must not depend on s̄, so let it be

a constant, 1
Z

• Therefore P (Es̄) = 1
Z
e− Es̄

kT , which is known as the Boltzmann distribution (or canonical distribution)

– Z is independent of s̄ and characterizes the system; it is a normalization, so that
∑

s̄

P (Es̄) = 1

– Z =
∑

s̄

e− Es̄
kT

– Z is known as the Boltzmann partition function (function of state)
• We may also compute it by Z =

∑
E

e− E
kT Ω(E) =

∑
E

e− E
kT e

1
k S(E) =

∑
E

e− E−T S(E)
kT

– Instead of summing over all microstates, we instead sum over all possible energies (i.e. the spectrum
of Ĥ)

– The quantity F = E − TS(E) is known as the Helmholtz free energy
• The probability that the system has energy E is just 1

Z
e− E−T S(E)

kT = 1
Z
e− F

kT , which is maximized when
F is minimized – therefore macroscopically, the system behaves as to minimize the Helmholtz free
energy

– The thermodynamic potential for the system is therefore the Helmholtz free energy
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Lecture 34 (2-17), Apr 6, 2023
Properties of the T, V, N System

• Such systems are a lot easier to study, since keeping T constant is easier and Z is a lot easier to find
than Ω

• Recall: for a T, V,N system in contact with a thermal reservoir, the probability of the system being in
any microstate is given by 1

Z
e−βE , where E is the energy of the microstate and β = 1

kT
• Z(T, V,N) =

∑
e−βE is called the partition function and plays a role analogous to the multiplicity

function
• dF (T, V,N) = −S dT −p dV +µ dN = ∂F

∂T
dT + ∂F

∂V
dV + ∂F

∂N
dN is the thermodynamic identity for F

– From this we get a new set of Maxwell’s equations
– Note: derivation not shown

• The probability that the system has some energy is then P (E) = 1
Z
e−βEΩ(E) = 1

Z
e−βEe

S
k =

1
Z
e−β(E−T S)

– P is maximized when E − TS = F is minimized, so we call F the free energy – the system wants
to minimize F

– F is the thermodynamic potential similar to energy except it’s minimized
• At low T , F ≈ E, so at low temperature the minimum of F is the minimum of E – the system goes to

its ground state
• At high T , F ≈ −TS, so the minimum of F is the maximum of S – the system goes to maximum

entropy
• Such systems are ordered at low temperature (ground state) and unordered at high temperature (high

entropy)
– When the system heats up, the order and disorder fight
– Phase transitions happen when one wins over the other

Partition Function of the Einstein Solid
• Recall the energy of a microstate is −ℏω(q1 + · · · + qN )

• Z =
∞∑

q1=0
· · ·

∞∑
qN =0

e− ℏω
kT (q1+···+qN )

=
∞∑

q1=0
e− ℏω

kT q1 · · ·
∞∑

qN =0
e− ℏω

kT qN

=
N∏

i=1
Zi

= ZN
1

– Z1 is the partition function for a single harmonic oscillator
– This is a general result – for systems where the energy is the sum of energies of smaller parts, the

partition function factors into a product of the partition functions of the smaller parts
– This is a useful property that the multiplicity function does not
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• Z1 =
∞∑

q=0
e− ℏωq

kT

=
∞∑

q=0

(
e− ℏω

kT

)q

= 1
1 − e−ℏωkT

= 1
1 − e−βℏω

– This gives Z =
(

1
1 − e−βℏω

)N

• Let’s calculate the average energy of the system as a function of temperature
• Ē =

∑
P (microstate)E(microstate)

= 1
Z

∑
E(microstate)e−βE(microstate)

= 1
Z

∑
− ∂

∂β
e−βE(microstate)

= − 1
Z

∂

∂β

∑
e−βE(microstate)

= − 1
Z

∂

∂β
Z

= − ∂

∂β
lnZ

• Substitute: Ē = − ∂

∂β
ln
(

1
1 − e−βℏω

)N

= N
∂

∂β
ln
(
1 − e−ωℏω

)
= Nℏωe−βℏω

1 − e−βℏω

• Ē

N
= ℏω
e

ℏω
kT − 1

– Unlike our previous approximations this works at all temperatures

– At low temperature, ℏω
kT

≫ 1 so Ē

N
≈ ℏωe− ℏω

kT (midterm solution)

– At high temperature e ℏω
kT ≈ 1 + ℏω

kT
so Ē

N
≈ kT which is equipartition!

• Note we have: Z1 =
∞∑

q=0
e− ℏω

kT q = 1 + e− ℏω
kT + e−2 ℏω

kT + e−3 ℏω
kT + · · ·

– Terms with qℏω ≫ kT will have pretty much no contribution to Z1, so these states with higher
energy do not contribute

– Z is called the partition function because roughly it describes the partition between states with
high energy and states with low energy

Lecture 35 (2-18), Apr 10, 2023
Maxwell-Boltzmann Speed Distribution

• We will consider as our “system” one of the particles and the rest of the particles as the “thermostat”;
for our “system”, what is P (v), i.e. the probability density function of the speed?

• Applying the Boltzmann distribution gives us P (v) dv = ce− E
kT v2 dv = ce− mv2

2kT v2 dv
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– v2 dv is the number of microstates that have speed in [v, v+ dv]; this is proportional to the surface
area of a sphere with radius v

– The exponential term is the probability of each microstate with energy v

• After applying normalization, in 3D we get P (v) = 4π
( m

2πkT

) 3
2
v2e− mv2

2kT

– In 2D, the number of microstates with speed in [v, v + dv] would be proportional to v dv, since it
is now proportional to the circumference of a circle with radius v

* In 2D the function is linear near v = 0 and the peak is closer to 0
– Note this distribution is for a classical gas, which breaks down as v → 0

• P (v) is maximum at v∗ =
√

2kT
m

–
〈

1
2mv

2
〉

= m

2

� ∞

0
P (v)v2 dv works out to be 3

2kT , which once again verifies equipartition

Intuition for the Partition Function
• Let the ground state have energy E0 = 0, then Z =

∑
e− E

kT = 1 + e− E1
kT + e− E2

kT + ...

• The partition function tells us roughly which states are important and which ones are not important at
a given temperature; it “partitions” the microstates into significant ones and insignificant ones

• If E ≫ kT , its contribution to Z will be very small, making them insignificant; they are decoupled from
thermodynamics at the given temperature

– Because Z determines F , the thermodynamic potential, which determines macroscopic properties,
this means these states are unimportant to the macroscopic behaviour

• e.g. at room temperature kT ≈ 0.02eV, which allows us to ignore excitations in the electronic and
nuclear states, because they have energies that are significantly larger

– This is why we only need to consider translational, rotational and vibrational energies and not
electronic and nuclear structures

Equivalence of T, V, N and E, V, N Systems
• The Boltzmann distribution was derived with a different set-up, yet it still gives the same results in the

case of the Einstein solid in the thermodynamic limit, if we use the average energy Ē = ⟨E⟩
• We can show that in the TD limit, the two formulations will arrive at the same results
• The main difference is that for the Boltzmann distribution E varies, but E is constant for the multiplicity

function approach

• We can find ⟨E⟩ as shown in the previous lecture and similarly ⟨E2⟩ and using this we can find σ2
E

N
;

this turns out to scale as 1√
N

• In the thermodynamic limit with very large N , the variance of E becomes negligible compared to N , so
the spread of energies is minimal and the average energy becomes functionally the same as the energy
itself
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