Verification

- Autonomous operation will it respond consistently and as expected without intervention?
- Robustness working consistently under rougher conditions, variations in expected inputs, etc $% \left({{{\mathbf{x}}_{i}}} \right)$
 - Repeated measurements for consistency separates tests from demo
- Reliability will the device break after many operation cycles?
- Repeatability will it work many times in the same way?
- Rubric:
 - Developing: Do you at least have a plan?
 - * Standards/codes are not always necessary but you need to make sure your tests make sense
 - Developed: When you have a plan, put it in motion
 - High quality: Now that you have your data, interpret it what does it mean for your design?
 - * Insights gained should enhance your understanding of the design concept
- Systematic testing:
 - Have a plan
 - Record results in detail
 - Repeat testing
 - * Confirm the validity of your tests early on
 - Interpret results
- What to test?
 - Recognize that your prototype is not the same as your design concept
 - Try to connect tests using proxies to the high-level requirements
 - Test according to specification

Visual Abstract

- A series of figures with connecting text, or even visual only figures should tell the whole story
- Provide a brief and engaging summary of the outcomes (less of the process)
- Focus on the design concept, the framing, the values provided
- Focus on either or both of the concept and the prototype (the prototype that you actually built, not the ones that didn't work out)
- Only one page but we can have multiple figures with connecting text
- Avoid:
 - Drawings that are more artistic than informative
 - * Is everything communicating something?
 - * Have someone look at the visual and then tell you what they're learning from it
 - Generic visuals of electromechanical components
 - * Don't just put in generic engineering-y images
 - * Actually show your concept