Lecture 4, Jan 16, 2023

Probability of Unions

Equation

The probability of the union of two events $P(A \cup B)$ is

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- In general $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $-P(A \cup B)$ is the overlap of A and B, which is counted twice by P(A) + P(B)
- Example: Probability of rolling a 7 or having at least one 2
 - Probability of rolling a 7 is $\frac{1}{6}$
 - Probability of rolling at least one 2 is $\frac{11}{36}$
 - Probability of rolling a 7 and having at least one 2 is $\frac{2}{36}$ (2 and 5, or 5 and 2)
- Final probability is $\frac{15}{36} = \frac{5}{12}$ For the union of more than 2 events, we can expand the rule:
 - $-P(A \cup B \cup C) = P(A) + P(B \cup C) + P(A \cap (B \cup C))$
 - $= P(A) + P(B) + P(C) P(B \cap C) P((A \cap B) \cup (A \cap C))$
 - $= P(A) + P(B) + P(C) P(B \cap C) P(A \cap B) P(A \cap C) + P(A \cap B \cap C)$
 - Note intersection distributes over union

Conditional Probability

Definition

If A and B are both events, the probability of B conditioned on A (or probability of B given A), P(B|A) is the probability of B given that A occurs

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

• This formula arose due to $P(A \cap B) = P(A)P(B|A)$, i.e. the probability of both A and B happening is the probability of A happening times the probability of B happening given that A happens