Lecture 36, Apr 12, 2023
Markov Chains

o Let us have n states, and p;(k) which gives the probability of being in state 7 in time &, for i = 1,...,n;
at any time if we’re in state 7, then there is a probability P;; of moving to state j

n
— Therefore Z pi(k) = 1 since the system must be in some state at any time

i=1
n

- Z P;; =1 since the system must go somewhere in the next time (this includes itself, i.e. P;; > 0)
=1

o Observe that p;(k+1) = ij(k:)Pji, i.e. the probability of being in 7 at the next time is the sum of
j=1

the probabilities of all states transitioning to @
p1(k) Poo -+ Puo
o Let p(k) = M= |+ . |, then p(k+1) = Mp(k), analogous to an LTI system
pn(k) Pon ++ Pno
— Generally p(k + s) = M°p(k)
— Notice that 17 M = 17 where 1 is the vector of all 1s, so it’s a left eigenvector with eigenvalue 1
e Any eigenvector ¢ = M q is a steady state, which the system will never come out of once entered
— We can show that g = klirr;o MP¥p for any initial PMF p, if such q exists
— Intuitively if we just let the Markov chain do its thing eventually it’ll end up in a steady state
o Example: Suppose we have 2 states, on (1) or off (0), P;; = 0.99, Pip = 0.01, Py; = 0,Py =1

1 0.01
M= [0 0.99}

— Steady state is p = [(1)} , i.e. 100% chance of off
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