
Lecture 36, Apr 12, 2023
Markov Chains

• Let us have n states, and pi(k) which gives the probability of being in state i in time k, for i = 1, . . . , n;
at any time if we’re in state i, then there is a probability Pij of moving to state j

– Therefore
n∑

i=1
pi(k) = 1 since the system must be in some state at any time

–
n∑

j=1
Pij = 1 since the system must go somewhere in the next time (this includes itself, i.e. Pii ≥ 0)

• Observe that pi(k + 1) =
n∑

j=1
pj(k)Pji, i.e. the probability of being in i at the next time is the sum of

the probabilities of all states transitioning to i

• Let p(k) =

p1(k)
...

pn(k)

 , M =

P00 · · · Pn0
...

. . .
...

P0n · · · Pn0

, then p(k + 1) = Mp(k), analogous to an LTI system

– Generally p(k + s) = M sp(k)
– Notice that 1T M = 1T where 1 is the vector of all 1s, so it’s a left eigenvector with eigenvalue 1

• Any eigenvector q = Mq is a steady state, which the system will never come out of once entered
– We can show that q = lim

k→∞
Mkp for any initial PMF p, if such q exists

– Intuitively if we just let the Markov chain do its thing eventually it’ll end up in a steady state
• Example: Suppose we have 2 states, on (1) or off (0), P11 = 0.99, P10 = 0.01, P01 = 0, P00 = 1

– M =
[
1 0.01
0 0.99

]
– Steady state is p =

[
1
0

]
, i.e. 100% chance of off
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