
Lecture 35, Apr 10, 2023
Support Vector Machines

• In normal regression we had x ∈ Rn and y ∈ Rn; for classification problems, they generally have input
x ∈ Rn with output y ∈ { −1, 1 }, i.e. the output is a binary yes or no

• We can express a hyperplane as wT x − b = 0, where w is the normal vector defining the orientation
and b is an offset from the origin

• The hyperplane divides all of the input space into 2 regions, wT x > b and wT x < b; each region
corresponds to a different value of y

• Given some data, we’re looking for a hyperplane that separates the 2 types of data
– We also want a hyperplane that’s the most “in the middle” and divides the empty space between 2

types evenly
• We want to find wT x − b = 0 that maximizes d, the distance on each side of the hyperplane, while

separating the data
• Unlike in linear regression, this problem is not analytically solvable

– In linear regression, a change in any data point is going to affect the total error and therefore
change the solution; however in this problem moving a data point may not affect the solution at all

– Depending on the orientation of the hyperplane w, different data points will become relevant
• What is the expression for d?

– Consider 2 parallel hyperplanes, wT x = 1 and wT x = 0 and some point on the first hyperplane
so wT x∗ = 1, then d = ∥x∗∥

– We know x∗ = αw so ∥x∗∥ = 1
∥w∥

, α = 1
∥w∥2 =⇒ x∗ = w

∥w∥2

– d = 1
∥w∥

• To maximize d we want to minimize ∥w∥ or ∥w∥2, subject to the constraint that if yi = 1, then
wT xi − b > 0, or if yi = −1, then wT xi − b < 0

• The support vector machine is min
w,b

∥w∥2 such that yi(wT xi − b) ≥ 0 for all training data
– This is a quadratic program
– If this is solvable, i.e. the data is separable, then we have an optimal classifier
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