Lecture 35, Apr 10, 2023

Support Vector Machines

- In normal regression we had $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$; for classification problems, they generally have input $x \in \mathbb{R}^n$ with output $y \in \{-1, 1\}$, i.e. the output is a binary yes or no
- We can express a hyperplane as $\boldsymbol{w}^T \boldsymbol{x} \boldsymbol{b} = 0$, where \boldsymbol{w} is the normal vector defining the orientation and b is an offset from the origin
- The hyperplane divides all of the input space into 2 regions, $w^T x > b$ and $w^T x < b$; each region corresponds to a different value of y
- Given some data, we're looking for a hyperplane that separates the 2 types of data
 - We also want a hyperplane that's the most "in the middle" and divides the empty space between 2 types evenly
- We want to find $\boldsymbol{w}^T \boldsymbol{x} \boldsymbol{b} = 0$ that maximizes d, the distance on each side of the hyperplane, while separating the data
- Unlike in linear regression, this problem is not analytically solvable
 - In linear regression, a change in any data point is going to affect the total error and therefore change the solution; however in this problem moving a data point may not affect the solution at all
 - Depending on the orientation of the hyperplane \boldsymbol{w} , different data points will become relevant
- What is the expression for d?
 - Consider 2 parallel hyperplanes, $\boldsymbol{w}^T \boldsymbol{x} = 1$ and $\boldsymbol{w}^T \boldsymbol{x} = 0$ and some point on the first hyperplane so $w^T x^* = 1$, then $d = ||x^*||$

- We know
$$\boldsymbol{x}^* = \alpha \boldsymbol{w}$$
 so $\|\boldsymbol{x}^*\| = \frac{1}{\|\boldsymbol{w}\|}, \ \alpha = \frac{1}{\|\boldsymbol{w}\|^2} \implies \boldsymbol{x}^* = \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|^2}$
- $d = \frac{1}{\|\boldsymbol{w}\|}$

- $\|w\|$
- To maximize d we want to minimize $\|w\|$ or $\|w\|^2$, subject to the constraint that if $y_i = 1$, then $w^T x_i - b > 0$, or if $y_i = -1$, then $w^T x_i - b < 0$ • The support vector machine is $\min_{w,b} ||w||^2$ such that $y_i(w^T x_i - b) \ge 0$ for all training data
- - This is a quadratic program
 - If this is solvable, i.e. the data is separable, then we have an optimal classifier