Lecture 34, Apr 5, 2023

Linear Regression

o We have a set of data in the form of input-output pairs, (x;,y;),i = 1,...,n; in general we want a
function f such that y = f(x) minimizes the errors e; = y; — f(x;)

o For now we will talk about linear regression — assuming y = ax + b so ¢; = y; — (ax; — b), so the total
n

squared error is £ = Z e = Z(yz — az; — b)?
i=1 i=1
e Goal: find mi;uf
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— Since they are linearly independent we can directly solve; let x = — Z T, Y= — Z Yi
n n
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— Solve: S (i — @)
b=y—ax
— We know this is a minimum, since £ is a simple convex quadratic
o With normal linear regression we only look at the vertical distances (i.e. errors in y); but we can improve
it by looking at the normal (geometric) distance instead, which is called a Deming regression
— In order to do this we also need to know the ratio of variances

— Rearrange and we get the normal equations:

Least Squares With Maximum Likelihood Estimation

o We assume each error e; is a realization of a normal RV with mean 0 and variance o>
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e If we maximize this, we get the same solution as the least squares approach
e We can think of this as assuming that each y; is normally distributed, with mean p = az; — b and
uniform variance o2
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