
Lecture 34, Apr 5, 2023
Linear Regression

• We have a set of data in the form of input-output pairs, (xi, yi), i = 1, . . . , n; in general we want a
function f such that y = f(x) minimizes the errors ei = yi − f(xi)

• For now we will talk about linear regression – assuming y = ax + b so ei = yi − (axi − b), so the total

squared error is E =
n∑

i=1
e2

i =
n∑

i=1
(yi − axi − b)2

• Goal: find min
a,b

E

– ∂E
∂a

=
n∑

i=1

∂

∂a
(yi − axi − b)2

= −
n∑

i=1
2(yi − axi − b)xi

= 0

– ∂E
∂b

=
n∑

i=1

∂

∂b
(yi − axi − b)2

= −
n∑

i=1
2(yi − axi − b)

= 0

– Rearrange and we get the normal equations:


nb + a

n∑
i=1

xi =
n∑

i=1
yi

b

n∑
i=1

xi + a

n∑
i=1

x2
i =

n∑
i=1

xiyi

– Since they are linearly independent we can directly solve; let x̄ = 1
n

n∑
i=1

xi, ȳ = 1
n

n∑
i=1

yi

– Solve:

a =
∑n

i=1(xi − x̄)yi∑n
i=1 (xi − x̄)2

b = ȳ − ax̄

– We know this is a minimum, since E is a simple convex quadratic
• With normal linear regression we only look at the vertical distances (i.e. errors in y); but we can improve

it by looking at the normal (geometric) distance instead, which is called a Deming regression
– In order to do this we also need to know the ratio of variances

Least Squares With Maximum Likelihood Estimation
• We assume each error ei is a realization of a normal RV with mean 0 and variance σ2

• L(e1, . . . , en; a, b) =
n∏

i=1

1√
2πσ

e− e2
2σ2

=
n∏

i=1

1√
2πσ

e− (yi−axi−b)2

2σ2

• If we maximize this, we get the same solution as the least squares approach
• We can think of this as assuming that each yi is normally distributed, with mean µ = axi − b and

uniform variance σ2
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