Lecture 33, Apr 3, 2023

One vs. Two-Tailed Tests

- *Two-tailed tests* are for hypotheses for an exact value (or two-sided range) of a variable; *one-tailed tests* are for hypotheses with one-sided ranges
- So far we've only considered two-tailed tests (e.g. temperature tomorrow is 10°C; H_0 is temperature is 10 degrees, H_1 is temperature is not)
- A one-tailed test would be e.g. hypothesis is eating something would cause you to live past 80, then $H_0: \theta \leq 80, H_1: \theta > 80$, we can set critical region $\theta > 82$

Relation of Hypothesis Testing to Confidence Intervals

- Consider a scenario where $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$, for a sample of size n with known variance σ^2
- Let $Z = \frac{X \mu}{\frac{\sigma}{\sqrt{n}}}$ as usual
- Before, we set the critical region and then calculated the probability of a type I error; what happens if we set α first and then calculate the critical region?

•
$$\alpha = P(\text{Type I}) = P(Z \le -z_{\alpha/2} \cup Z \ge z_{\alpha/2}) \implies 1 - \alpha = P\left(-z_{\alpha/2} \le \frac{X - \mu_0}{\frac{\sigma}{\sqrt{n}}} \le z_{\alpha/2}\right)$$

- The critical region would be $\frac{X-\mu}{\frac{\sigma}{\sqrt{n}}} \notin [-z_{\alpha/2}, z_{\alpha/2}]$
- This is the exact same as a confidence interval

p-Values

Definition

Given a sample X_1, \dots, X_n with variance σ^2 , and the null hypothesis $H_0: \mu = \mu_0$, then the *p*-value is defined as

$$p = P\left(\left|\frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}\right| > |z|\right)$$
$$= P(|Z| \ge |z|)$$
$$= 2P(Z > |z|)$$
$$= 2(1 - \Phi(|z|))$$

where $Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$ has distribution n(z; 0, 1) and z is the observed value of Z

- The p value is the probability that, given H_0 is true, an even more extreme observation will be made – If $p \approx 0$, that means z is very far from 0 and therefore \bar{x} is very far from μ_0 , so H_0 is highly unlikely
 - If $p \approx 1$, then z is close to 0 so $\bar{x} \approx \mu$, so H_0 cannot be rejected
- We still need to assume H_0 , but unlike the other methods of hypothesis testing, to compute a *p*-value we don't need to make an ad-hoc critical region
- Example: $H_0: \mu = 5, H_1: \mu \neq 5$, with $n = 40, \bar{x} = 5.5, s = \sigma = 1$ - $z = \frac{5.5 - 5}{\frac{1}{\sqrt{40}}} \approx 3.16$
 - * If we choose $\alpha = 0.05$ so the critical region for Z is outside [-1.96, 1.96], then z is outside the critical region so we reject H_0

$$-p = 2P(Z > |z|) = 2(1 - \Phi(3.16)) = 0.0016 \approx 0$$

* The very low *p*-value means H_0 is highly unlikely

 $-\,$ Note to compute the $p\mbox{-value}$ we didn't need to specify a critical region