Lecture 31, Mar 29, 2023

Hypothesis Testing

- A *hypothesis* is a conjecture made about a population
 - e.g. $H_0: P(H) = 0.5$ for a coin; an alternative hypothesis is $H_1: P(H) > 0.5$
- In general, we have a null hypothesis H_0 (the status quo, or what we believe before the experiment), and an alternative hypothesis H_1 ; with each sample tested, we either reject H_0 for H_1 , or we fail to reject H_0 and nothing changes
 - In the case where we fail to reject H_0 , we can't make conclusions because it's still possible that H_0 is rejected in a later experiment
 - e.g. in a drug trial, H_0 is the drug has no effect, H_1 is the drug having an effect

Type I and II Errors

- Type I errors are rejections of H_0 when it is true (i.e. false positives); α is the probability of a type 1 error
 - These result from oversensitive tests
- Type II errors are failures to reject H_0 when it is false (i.e. false negatives); β is the probability of a type 2 error
 - These results from undersensitive tests
- Example: testing for mean tensile strength of a new alloy
 - $H_0: \mu = 1000$ MPa
 - $-H_1: \mu \neq 1000$ MPa
 - Suppose we have n = 25 with $\sigma = 50$, to use the CLT
 - First, $P(\mu = 1000) = 0$ since μ is continuous; we therefore need to define a range where we don't reject H_0 , e.g. $990 \le \bar{x} \le 1010$
 - * The *critical region* is the complement of this range (i.e. the range that results in rejection of H_0)
 - This is a confidence interval; we want to compute the confidence

$$-\alpha = P(\text{Type I})$$

$$= P(X < 990 \cup X > 1010 \mid \mu = 1000)$$

$$= 1 - P(990 \le \overline{X} \le 1010 \mid \mu = 1000)$$

$$= 1 - P\left(\frac{990 - 1000}{\frac{50}{\sqrt{25}}} \le Z \le \frac{1010 - 1000}{\frac{50}{\sqrt{25}}}\right)$$
$$= 1 - P(-1 \le Z \le 1)$$

- = 0.32
- * The chance of a false positive is 32%, which is not good
- * To reduce α , we can either increase n, or widen the range where H_0 is accepted
- * If we do the latter however, that makes our test less sensitive and increases the probability of a type II error
- The exact size of the critical region is often ad-hoc, but consistency is key do many tests with the same critical region, and compare results