
Lecture 29, Mar 23, 2023
Confidence Interval of the Variance

• Recall that W 2 = (n − 1)S2

σ2 = 1
σ2

n∑
i=1

(Xi − X̄)2 follows a chi-squared distribution with v = n − 1

degrees of freedom, assuming a normal distribution
• The chi-squared distribution is asymmetric, so getting a confidence interval is harder
• Let χ2

β be the value of χ2 such that the area under the distribution to the left of it is β

– χ2
α/2 is the value of χ2 such that the area under the distribution to the left of it is α/2

– χ1−α/2 is the value of χ2 such that the area under the distribution to the right of it is α/2

• Denote the CDF of the chi-squared distribution as F (y; v) =
� y

0
f(x; v) dx

– χ2
α/2 = F −1(α/2; v) and χ2

1−α/2 = F −1(1 − α/2; v)
• 1 − α = P (χ2

α/2 ≤ W 2 ≤ χ2
1−α/2)

= P

(
χ2

α/2 ≤ (n − 1)S2
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)
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)

Equation

Confidence interval of the variance: Given n IID samples, with a sample variance of S2 and a confidence
level of 1 − α, then the confidence interval for the true variance σ2 is[

(n − 1)S2

χ2
1−α/2

,
(n − 1)S2

χ2
α/2

]

where χ2
β = F −1(β; v), and F is the CDF of the chi-squared distribution with v = n − 1 degrees of

freedom

Maximum Likelihood Estimation
• So far we’ve relied on intuition to define our estimators (e.g. X̄ for µ, S2 for σ2, etc)
• Can we find a systematic way to define an estimator for any statistic? (e.g. what if we wanted to

estimate v in a chi-squared distribution?)

Definition

The likelihood function for an IID sample x1, · · · , xn, with each sample distributed according to a
PDF g(x; θ), where θ is a parameter vector, is

L(x1, · · · , xn; θ) = f(x1, · · · , xn; θ)
= g(x1; θ) · · · g(xn; θ)

The maximum likelihood estimator is then

θ̂ = max
θ

L(x1, · · · , xn; θ)

1



• Maximum likelihood estimation estimates the parameter by attempting to maximize the likelihood
function, which roughly describes the probability of getting the particular sample

– In the discrete case, f(x1, · · · , xn; θ) is exactly the probability of the sample occurring; with a
continuous distribution it is more complicated but the intuition still holds

• Example: n = 1, x1 = 3, θ = µ, standard normal f(x1; θ) = n(x1; θ, 1)
– We’re trying to move the mean around so that f(x1; θ) is maximized
– The optimal value is θ = x1 = 3 because the normal distribution peaks at its mean
– i.e. having a mean of 3 makes it the most likely that we’ll get x1 = 3

• Example: Bernoulli distribution, estimating p, given sample 1, 0, 1, 1
– We can make this a binomial distribution with 3 successes
– L(1, 0, 1, 1; p) =

(
4
3

)
p3(1 − p)1 ∝ p3(1 − p) = p3 − p4

– dL

dp
∝ 3p2 − 4p3 = 0 =⇒ 3 − 4p = 0 =⇒ p = 3

4
– This is exactly what we expect – if we get 3 successes in 4 trials, then we’d estimate the success

probability to be 3
4
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