Lecture 26, Mar 16, 2023

Monte Carlo Integration

- What if we want to numerically integrate a function in a large number of dimensions? $\int_{x_1} \cdots \int_{x_d} f(x_1, \cdots, x_d) \, \mathrm{d} x_d \cdots \mathrm{d} x_1$
 - In 1 dimension we can use the trapezoidal rule
 - The number of points we need to take scales exponentially with the number of dimensions, so for higher dimensions the number of points we need becomes impractical
 - The error of the trapezoidal approximation scales as $O(N^{-2})$ where N is the number of points per dimension; given N total points and d dimensions, the error would be $O((N^{1/d})^{-2}) = O(N^{-2/d})$
 - As the number of dimensions increase, the computational effort increases exponentially "the curse of dimensionality"
- Consider if we had a sample of N uniform random variables in $[0,1]^d$, i.e. a d-dimensional unit cube, each random variable being a $d\mbox{-dimensional vector}$

- This is a sample
$$\begin{bmatrix} x_1^1 \\ \vdots \\ x_d^1 \end{bmatrix}$$
, $\begin{bmatrix} x_1^2 \\ \vdots \\ x_d^2 \end{bmatrix}$, \cdots , $\begin{bmatrix} x_1^N \\ \vdots \\ x_d^N \end{bmatrix}$
• Let RV $Y = f(X_1, \cdots, X_d)$, where f is the function we want to integrate
- $E[Y] = \int_0^1 \cdots \int_0^1 f(x_1, \cdots, x_d) \, dx_1 \cdots \, dx_d$
* Since the distribution is uniform the distribution is 1 for all points in the unit cube
* The expectation turns out to be the same as the integral we wanted to evaluate

• Let
$$\bar{Y} = \frac{1}{N} \sum_{k=1}^{N} Y^k = \frac{1}{N} \sum_{k=1}^{N} f(x_1^k, \cdots, x_d^k)$$
; this is our sample mean
- $E[\bar{Y}] = \frac{1}{N} \sum_{k=1}^{N} E[f(x_1^k, \cdots, x_d^k)] = \frac{1}{N} \sum_{k=1}^{N} \mu = \mu$

* This means \overline{Y} is an unbiased estimator of E[Y], which has the same value of the integral we want to solve

- Therefore we can take the average of a bunch of uniform samples in the unit cube to estimate the integral (referred to as *Monte Carlo* integration)
- Let $Z = \frac{\bar{Y} \mu}{\frac{\sigma}{\sqrt{N}}}$, then by the CLT as $N \to \infty$, Z has standard normal distribution
 - The standard deviation of $\bar{Y} \mu$ is decreasing at a rate of $\frac{1}{\sqrt{n}}$

– This means the error is also decreasing at a rate of
$$\frac{1}{\sqrt{N}} = N^{-\frac{1}{2}}$$

- The full steps of Monte Carlo integration:
 - 1. Make uniform random variables $\begin{bmatrix} x_1^k \\ \vdots \\ x_d^k \end{bmatrix}$, $k = 1, \cdots, N$ (the sample points) 2. Evaluate the function at these points $Y^k = f(x_1^k, \cdots, x_d^k)$

3. The result of the integral is approximately
$$\frac{1}{N} \sum_{k=1}^{N} Y^k$$

- Compare MC's order of $O(N^{-\frac{1}{2}})$ to trapezoidal rule's $O(N^{-\frac{2}{d}})$
 - MC's rate of convergence is unaffected by dimension while trapezoidal rule is highly dependent on dimensionality
 - For lower number of dimensions (d < 4) trapezoidal rule is still better
 - For any higher dimensions MC becomes better