Lecture 24, Mar 13, 2023

Other Confidence Intervals

- We may want a one-sided confidence interval $1 \alpha = P(Z \le z_{\alpha})$
- Same approach may be used to get $1 \alpha = P\left(\mu \le \bar{X} + z_{\alpha}\frac{\sigma}{\sqrt{n}}\right) = P(\mu \le \bar{X}_U)$ If the variance is unknown we have to use the *t*-distribution, thereby assuming the population is normal

- Let
$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$
 with sample variance $S = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

* T has a t-distribution, h(t)

* Let the CDF be
$$H(t) = \int_{-\infty}^{t} h(x) dx$$

- Once again define $t_{\beta} > 0$ for $\beta < 0.5$ such that $H(-t_{\beta}) = \beta$, that is, the area under the PDF above t_{β} is β

$$-1 - \alpha = P(-t_{\alpha/2} \le T \le t_{\alpha/2}) = P\left(\bar{X} - t_{\alpha/2}\frac{S}{\sqrt{n}} \le \mu \le \bar{X} + t_{\alpha/2}\frac{S}{\sqrt{n}}\right)$$

* Therefore we find $\bar{X}_L = \bar{X} - t_{\alpha/2}\frac{S}{\sqrt{n}}, \bar{X}_U = \bar{X} + t_{\alpha/2}\frac{S}{\sqrt{n}}$

- Note if we had known variance we end up getting a smaller confidence interval

Standard Error

- Notice in our confidence interval we used $\frac{\sigma}{\sqrt{n}}$; the size of the interval is proportional to it
- $\frac{\sigma}{\sqrt{n}}$ is referred to as the *standard error*, since in a way it tells us how much error there could be in our estimate of the mean

Prediction Intervals

- If we have samples X_1, \dots, X_n , normally distributed, what can we say about the next single sample X_0 ?
- \overline{X} is a good point estimate, so what is the error $X_0 \overline{X}$?
 - We know the distribution of this error is normal, with variance $\sigma^2 + \frac{\sigma^2}{r}$

• Let
$$Z = \frac{X_0 - X}{\sigma \sqrt{1 + \frac{1}{n}}}$$
, then Z has distribution $n(z; 0, 1)$

• Therefore
$$1 - \alpha = P(-z_{\alpha/2} \le Z \le z_{\alpha/2}) \implies P\left(\bar{X} - z_{\alpha/2}\sigma\sqrt{1 + \frac{1}{n}} \le X_0 \le \bar{X} + z_{\alpha/2}\sigma\sqrt{1 + \frac{1}{n}}\right)$$

• This gives us our *prediction interval*

Definition

Given samples X_1, \dots, X_n normally distributed, the *prediction interval* is defined as

$$\left[\bar{x} - z_{\alpha/2}\sigma\sqrt{1+\frac{1}{n}}, \bar{x} + z_{\alpha/2}\sigma\sqrt{1+\frac{1}{n}}\right]$$

such that

$$1 - \alpha = P\left(\bar{X} - z_{\alpha/2}\sigma\sqrt{1 + \frac{1}{n}} \le X_0 \le \bar{X} + z_{\alpha/2}\sigma\sqrt{1 + \frac{1}{n}}\right)$$

That is, there is a probability $1 - \alpha$ that the next single sample X_0 falls within this interval

• Prediction intervals can be useful for outlier detection