Lecture 21, Mar 6, 2023

Distribution of Sample Variance

• What is the distribution of the sample variance
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$
?

Theorem		
Let	$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$	
	$= \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \bar{X})^2$	
then χ^2 has a chi-squared d	listribution with $v = n - 1$, which is given by	
	$f(y;v) = \begin{cases} \frac{1}{2^{\frac{v}{2}}\Gamma\left(\frac{v}{2}\right)}y^{\frac{v}{2}-1}e^{-\frac{y}{2}} & y > 0\\ 0 & y \le 0 \end{cases}$	
	· · · · · · · · · · · · · · · · · · ·	
If μ is known, then	1 n	
	$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$	
has a chi-squared distributi	on with $u = n$	

has a chi-squared distribution with v = n

- v is the number of degrees of freedom, or independent pieces of information
- In the case where \overline{X} is used, because \overline{X} itself is dependent on X_i , there is one fewer degree of freedom, which gives higher variance (chi-squared distribution shifts to the right)

The *t*-distribution

- Using CLT we can make inferences about the mean when σ^2 is known; however the t-distribution must be used when σ^2 is not known
- Consider the statistic $T = \frac{\bar{X} \mu}{\frac{S}{\sqrt{n}}}$; for large $n \ (n \ge 30)$ we have $S \approx \sigma$ so T approaches a normal distribution
- For a smaller n the t-distribution is a more accurate description

Definition

The t-distribution is given by

$$h(t;v) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)\sqrt{\pi v}} \left(1 + \frac{t^2}{v}\right)^{-\frac{v+1}{2}}$$

Given samples X_1, \dots, X_n with sample mean \overline{X} and sample variance S^2 , then the statistic

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$

has a *t*-distribution with v = n - 1 degrees of freedom

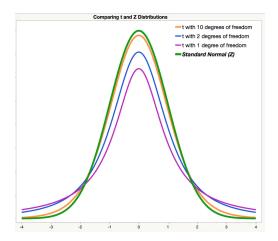


Figure 1: Shape of the *t*-distribution compared to the standard normal distribution

- The t-distribution has heavier "tails" than the standard normal because we have less information, it's more likely that our estimate \bar{X} is further from the true mean μ
- As the number of degrees of freedom $v \to \infty$ the t-distribution approaches the standard normal if we have infinite samples, we'd know σ precisely