Lecture 2, Jan 11, 2023

Counting

- Counting is the problem of finding the number of elements in some event A
 - e.g. for a coin flip, if $A = \{H\}$, then we have one element; for a die, if $A = \{\text{even}\}$, then we have 3 elements
- Two events A and B are mutually exclusive if $A \cap B = \emptyset$
 - For two events that are mutually exclusive, we can add up their number of elements when counting

Multiplying Options

- Where we can choose 1 option from each category, we multiply the category sizes together - e.g. choosing a president and VP from n people has n(n-1) possibilities
- Example: How many even 4-digit numbers can we make from { 0, 1, 2, 5, 6, 9 }?
 - Consider events A and B:
 - * In A, 0 is the last digit so A has $1 \cdot 5 \cdot 4 \cdot 3 = 60$ elements
 - * In B, 0 is not the last digit (A and B are mutually exclusive); the last digit could be 2 or 6 and the first digit can be anything but zero or what we chose for the last digit, so we have $2 \cdot 4 \cdot 4 \cdot 3 = 96$ elements
 - * Since $A \cap B = \emptyset$, the total count is 156

Permutations

- A *permutation* is an ordering of the elements in an event
- Given n items, there are n! permutations

• If we want to permute r items out of n, there are $\frac{n!}{(n-r)!}$ permutations

• With n slots to fill, where there are m kinds of items and n_k of each item, the number of permutations) n! $\frac{1}{n}$

$$= \frac{1}{n_1, n_2, \cdots, n_m} = \frac{1}{n_1! n_2! \cdots n_m!}$$

• Example: How many distinct ways can we order "ATLANTIC"?

$$-\binom{8}{2,2,1,1,1,1} = \frac{8!}{2!2!1!1!1!1!} = 10080$$

- Example: If we flip a coin 10 times, how many sequences have 4 heads?
 - We're looking at combinations of HHHHTTTTTTT, so $\binom{n=10}{n_1=4, n_2=6} = \frac{10!}{4!6!} = 210$ This gives us a probability of getting 4 heads of $\frac{210}{2^10} = \frac{210}{1024}$ (assuming a fair coin)