Lecture 19, Mar 1, 2023

Sampling

- Often we can't measure the entire population, so we instead examine a subset
- How representative is this subset to the population?
- A sample could be thought of as actual data x_1, \dots, x_n , with the assumption that each x_i is a realization of an independent random variable X_i
 - Since each of these measurements is done separately, they are separate random variables, but we assume that they all have the same distribution as the population

Definition

The sample mean (or realized/empirical sample mean) is defined as

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

The *random variable* of the mean is defined as

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

- \overline{X} itself is a random variable
- Assuming all X_i are independent identically distributed (IID) with mean μ , then we can find $E[\bar{X}]$

$$E[\bar{X}] = \frac{1}{n} \sum_{i=1}^{n} X_i$$
$$= \frac{1}{n} \sum_{i=1}^{n} E[X_i]$$
$$= \frac{1}{n} \sum_{i=1}^{n} \mu$$
$$= \mu$$

Definition

The *sample variance* is defined as

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

The sample variance random variable is defined as

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

- Why n-1 in the denominator?
 - The mean itself \bar{x} is a function of the data points, so it is not independent; normally it would not have an effect on the variance, but in the case of sample variance, it has a contribution, which we eliminate via the n-1 in the denominator
 - Assume $\operatorname{var}(X_i) = \sigma^2$ for all *i* (that is, each RV has the same variance); we would like to get $E[S^2] = \sigma^2$

$$-S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2} - 2X_{i}\bar{X} + \bar{X}^{2}$$

$$= \frac{1}{n-1} \left(n\bar{X}^{2} - 2n\bar{X}^{2} + \sum_{i=1}^{n} X_{i}^{2} \right)$$

$$= \frac{1}{n-1} \left(-n\bar{X}^{2} + \sum_{i=1}^{n} X^{2} \right)$$

$$-E[S^{2}] = \frac{1}{n-1} \left(-nE[\bar{X}^{2}] + E\left[\sum_{i=1}^{n} X_{i}^{2}\right] \right)$$

$$= \frac{1}{n-1} \left(-nE[\bar{X}^{2}] + \sum_{i=1}^{n} E[X_{i}^{2}] \right)$$

$$= \frac{1}{n-1} \left(-n\left(E[\bar{X}]^{2} + \operatorname{var}(\bar{X})\right) + \sum_{i=1}^{n} \mu^{2} + \sigma^{2} \right)$$

$$= \frac{1}{n-1} \left(-n\operatorname{var}(\bar{X}) + n\sigma^{2} \right)$$

$$= \frac{1}{n-1} \left(-n\operatorname{var}\left(\frac{1}{n}\sum_{i=1}^{n} X_{i}\right) + n\sigma^{2} \right)$$

$$= \frac{1}{n-1} \left(-n\frac{1}{n^{2}}\sum_{i=1}^{n} \operatorname{var}(X_{i}) + n\sigma^{2} \right)$$

$$= \frac{1}{n-1} \left(-n\frac{1}{n}\sigma^{2} + n\sigma^{2} \right)$$

$$= \frac{1}{n-1} \left(-1 \operatorname{var}(\bar{X}) + n\sigma^{2} \right)$$

$$= \frac{1}{n-1} \left(-n \operatorname{var}(\bar{X}) + n\sigma^{2} \right)$$

- We call this an $unbiased\ estimator$ of the variance

Histograms

- In the case of a discrete RV, the x axis is the possible outcomes, the y axis is the number of times each outcome is observed
- As the number of samples increases, the histogram divided by the sample size approaches the PMFIn the case of a continuous RV we make bins to contain ranges of observations
 - As the number of samples increases and the bin size approaches 0, the histogram divided by the sample size approaches the PDF